期刊文献+

由粗到细的高光谱图像多端元光谱混合分析

A Corse-to-Fine Scheme for Multiple Endmember Spectral Mixture Analysis of Hyperspectral Images
原文传递
导出
摘要 光谱可变性是影响高光谱图像光谱混合分析精度的重要因素,多端元光谱混合分析是解决该问题的有效手段。为了降低光谱混合分析时间复杂度的同时提高其精度,提出了一种由粗到细的多端元光谱混合分析算法,该算法首先基于扩展的端元集对每个像元进行全约束光谱混合粗分析,确定含所有地物的初始端元集,在此基础上进一步进行精细光谱混合分析,迭代光谱混合分析构建端元子集,最终根据重构误差变化量确定各个像元的最优端元集。实验结果表明:相比迭代光谱混合分析法和分层多端元光谱混合分析法,所提出的由粗到细的高光谱图像多端元光谱混合分析能有效降低算法反演丰度误差并改善计算效率。 Spectral variability is an important factor which influences the accuracy of spectral analysis in hyper⁃spectral images.Multiple endmembers spectral mixture analysis is an effective method to solve this problem.In order to reduce the time complexity of spectral mixing analysis and improve the accuracy in the same time,a multiple endmember spectral mixture analysis algorithm based on corse-to-fine scheme is proposed.Based on the extended endmember set for each pixel,the proposed algorithm firstly make fully-constrained spectral mix⁃ing coarse analysis to determine the initial set of end-members containing all land cover material.On this basis,the algorithm further conducts fine spectral mixture analysis,iterative spectral mixture analysis to build endmember subsets and the optimal end-member set is finally determined according to the variation of reconstruc⁃tion error.The experimental results show that compared with the iterative spectral mixture analysis method and the hierarchical multi-endmember spectral mixture analysis algorithm,the proposed algorithm reduces the error of inversion abundance and improves computational efficiency greatly.
作者 左成欢 赵辽英 陆海强 厉小润 Zuo Chenhuan;Zhao Liaoying;Lu Haiqiang;Li Xiaorun(Institute of Computer Application Technology,Hangzhou Dianzi University,Hangzhou 310018,China;Jiaxing Hengchuang Electric Power Equipment Co.LTD,Jiaxing 314033,China;College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《遥感技术与应用》 CSCD 北大核心 2019年第6期1305-1314,共10页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(61671408、61571170) 教育部联合基金项目(6141A02022314)
关键词 高光谱图像 多端元 光谱混合分析 重构误差变化量 Hyperspectral images Multiple endmembers Spectral mixture analysis The variation of recon⁃struction error
  • 相关文献

参考文献7

二级参考文献92

  • 1谭炳香,李增元,陈尔学,庞勇.EO-1 Hyperion高光谱数据的预处理[J].遥感信息,2005,27(6):36-41. 被引量:131
  • 2张俊,周成虎,李建新.新疆焉耆盆地绿洲景观的空间格局及其变化[J].地理研究,2006,25(2):350-358. 被引量:24
  • 3吴波,周小成,赵银娣.端元光谱变化与混合像元分解精度的关系研究[J].遥感信息,2007,29(3):3-7. 被引量:8
  • 4张兵,高连如.高光谱图像分类与目标探测[M].北京:科学出版社.2011.
  • 5Winter M E.Fast autonomous spectral endmember determination in hyperspetctral data[A],The 13th International Conference on Applied Geologic Remote Sensing[C].Vancouver,British Columbia,Canada.1999.
  • 6Penn B.S..Using simulated annealing to obtain optimal linear endmember mixtures of hyper spectral data[J].Computers & Geosciences,2002,28(7):809~817.
  • 7Bateson C.A.,Asner G..P.,Wessman C.A.Endmember bundles:a new approach to incorporating endmember variability in spectral mixture analysis[J].IEEE Trans.on Geosci.and Remote Sens,1999.
  • 8Sharp M.H..Analysis of error propagation in spectral unmixing[A].IEEE Geoscience and Remote Sensing Symposium[C],2001,2376~2378.
  • 9Wu H.H.Image restoration for improved spectral unmixing[D].PH.D.Dissertation,Arizona university,USA,1992.
  • 10Li J.,Bruce L.M..Wavelet-Based feature extraction for improved endmember abundance estimation in linear unmixing of hyperspectral signals[J].IEEE Trans.Geoscience and Remote Sensing,2004,42(3):644~649.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部