期刊文献+

基于GA-KPCA的特征选择在水下目标识别中的应用

Application of Feature Selection Based on GA-KPCA in Underwater Target Recognition
下载PDF
导出
摘要 水下辐射声场和水声信道的复杂性使得声呐接收的噪声信号相互耦合、调制畸变,具有很强的非线性。文中利用核函数将原始特征空间的非线性数据映射至高维特征空间,在高维特征空间进行主元分析(PCA)法提取特征,并采用遗传算法(GA)对核参数进行优化,形成了基于GA-核主元分析(KPCA)的水下目标特征选择方法。实际样本数据验证结果表明,该方法在一定程度上弥补了传统线性PCA方法处理非线性数据的不足,能够获得更高的识别正确率。 The complexity of underwater radiated acoustic field and underwater acoustic channel results in intercoupling of the noise signals received by sonar,modulation distortion,and strong nonlinearity.In this paper,the kernel function is used to map the nonlinear data of the original feature space to the high-dimensional feature space;the principal compo-nents analysis(PCA)method is used to extract the features from the high-dimensional feature space,and the genetic algorithm(GA)is used to optimize the kernel parameters,thus an underwater target feature selection method based on GA-kernel principal components analysis(KPCA)is established.Actual sample data validation shows that,to a certain extent,this method compensates the insufficiency of the traditional linear PCA method in dealing with nonlinear data,and it has higher recognition accuracy.
作者 严良涛 项晓丽 YAN Liang-tao;XIANG Xiao-li(91388th Unit,the People’s Liberation Army of China,Zhanjiang 524022,China;Gci Science&Technology Co.Ltd.Guangzhou510220,China)
出处 《水下无人系统学报》 北大核心 2020年第1期113-117,共5页 Journal of Unmanned Undersea Systems
关键词 水下目标识别 遗传算法 核主元分析法 核函数 underwater target recognition genetic algorithm(GA) kernel principal component analysis(KPCA) kernel function
  • 相关文献

参考文献5

二级参考文献28

  • 1林奕琳,韦岗,杨康才.语音情感识别的研究进展[J].电路与系统学报,2007,12(1):90-98. 被引量:33
  • 2Vapnik V N. The nature of statistical learning theory [ M ]. Berlin : Springer, 1995.
  • 3Schlkopf B, Smola A. Learning with kernels:support vector machines, regularization, and beyond [ R ]. Cambridge, MA : MITPress ,2002.
  • 4Wu Youxi, Guo Lei, Dong Guoya, et al. Tissue Conductivity Estimation in Two-Dimension Head Model Based on Support Vector Machine [ C ]//Proceedings of the 2006 IEEE Engineering in Medicine and Biology 28th Annual Conference. 2006 : 1130 - 1133.
  • 5F Takens. On the numerical determination of the dimension of an attractor[ C]. In: Rand D Young L S editors. Dynamical Systems and Turbulence. Warwick, 1980, Lecture Notes in Mathematics. Spring - Verlag, 1981, 898:366 - 381.
  • 6R Mane. On the dimension of the compact invariant sets of certain nonlinear maps[ C]. In: Rand D, Young L S editors. Dynamical Systems and Turbulence. Warwick, 1981,898 : 230.
  • 7A M Fraser, H L Swinney. Independent coordinates for strange attractors from time series [ J ]. Phys. Rev. A ( S1094 - 1662 ), 1986,33: 1134-1140.
  • 8H D I Abarbanel, etc. The analysis of observed chaotic data in physical systems[ J]. Rev Mod Phys, 1993,65:1331 - 1392.
  • 9胡旺,李志蜀,黄奇.基于双窗口和极值压缩的自适应中值滤波[J].中国图象图形学报,2007,12(1):43-50. 被引量:20
  • 10叶秀芬,王兴梅,门志国,仇晨光,于飞.改进的MRF水下目标检测方法[J].哈尔滨工业大学学报,2009,41(7):102-105. 被引量:6

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部