摘要
近年来很多室内定位技术被提出,但是大多数技术都是重点研究怎样提高定位精准度,却忽略了系统处理海量数据的稳定性、实时性和高效性。特别是在机场高峰时段和大面积航班延误情况下,大量旅客聚集在航站楼产生了海量WiFi数据,导致传统的数据处理架构出现处理数据不及时、统计实时性差、稳定性差的问题。针对该问题设计一种高吞吐、低延迟的分布式实时数据处理架构。该架构使用消息中间件、实时流数据处理、内存并行计算和分布式数据库读写技术,实现了大客流环境下处理海量实时WiFi数据的分布式定位分析系统。通过使用模拟数据和实时数据进行多组实验测试,验证了系统在保持定位算法准确性的情况下,仍然具有稳定、实时、高效的定位分析能力。
In recent years,many indoor positioning technologies have been proposed,but most of them focus on how to improve positioning accuracy,while ignoring the stability,real⁃time performance and high efficiency of the system in processing massive data.Especially in the case of airport peak hours and large⁃scale flight delays,while a large number of passengers gather in the terminal,which makes a large amount of WiFi data generated,the traditional data processing architecture shall produce the problems of unresponsive data processing,poor statistical real⁃time performance and poor stability.Therefore,the distributed real⁃time data processing architecture with high throughput and low latency is designed to solve above problems.In the architecture,the message middleware,real⁃time streaming data processing,memory parallel computing and distributed database write⁃read technology are adopted to realize the distributed positioning analysis system for processing massive real⁃time WiFi data in the large passenger flow environment.The multi⁃group experimental test using simulation data and real⁃time data proves that the system has stable,real⁃time and efficient positioning analysis ability while still maintaining the accuracy of the positioning algorithm.
作者
韩萍
王浩
方澄
牛勇钢
贾云飞
HAN Ping;WANG Hao;FANG Cheng;NIU Yonggang;JIA Yunfei(School of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China;School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)
出处
《现代电子技术》
北大核心
2020年第4期43-47,50,共6页
Modern Electronics Technique
基金
民航局安全能力建设基金(20600512)
中国民航大学科研启动基金(2017QD053)
关键词
定位分析
WiFi数据
架构构建
分布式处理
系统测试
性能比较
positioning analysis
WiFi data
architecture building
distributed processing
system testing
performance comparison