摘要
为了解决全监督语义分割网络训练成本高的问题,研究者们提出了基于弱监督学习下的语义分割方法。文章对弱监督学习的语义分割方法进行综述,并介绍了语义分割领域常用的数据集和评价指标,最后提出了弱监督语义分割的发展方向。
In order to solve the problem of high training cost of fully supervised semantic segmentation network,researchers proposed a semantic segmentation method based on weakly supervised learning.This paper summarizes the semantic segmentation methods of weakly supervised learning,introduces the data sets and evaluation indexes commonly used in the field of semantic segmentation,and finally puts forward the development direction of weakly supervised semantic segmentation.
作者
曾孟兰
杨芯萍
董学莲
罗倩
ZENG Menglan;YANG Xinping;DONG Xuelian;LUO Qian
出处
《科技创新与应用》
2020年第8期7-10,共4页
Technology Innovation and Application
关键词
弱监督学习
语义分割
数据集
评价指标
weakly supervised learning
semantic segmentation
dataset
evaluation index