期刊文献+

基于倒数-高斯级联低通模型的光学字符识别系统

Optical Character Recognition System Based on Reciprocal-Gao Si Cascade and Low-pass Model
下载PDF
导出
摘要 OCR光学字符识别技术在处理纸质信息与光电信息的交互问题上有着重要的作用。本文基于容量为20000份的公开光学字符识别集,在学习研究OCR光学字符识别技术情况下,探究识别字符所需的特征、使用基于倒数-高斯级联低通滤波降噪方法,经过二值化、粗细特征识别、垂直投影角变换以及字符信息归一化处理,将OCR光学字符识别流程各个步骤数学表达化,得到一组数学表达式。对表达式组整合、修改,从而建立得到识别光学字符的数学模型。然后评价并优化模型以及计算试验模型预测的正确率。 OCR optical character recognition technology plays an important role in dealing with the interaction between paper information and photoelectric information.Based on the open optical character recognition set with a capacity of 20,000 copies,this paper studies OCR optical character recognition technology,explores the features needed to recognize characters,uses the low-pass filtering denoising method based on reciprocal-Gauss cascade,after binarization,coarse and fine feature recognition,vertical projection angle transformation and normalization of character information,all steps of OCR optical character recognition process are discussed.Mathematical expression,get a set of mathematical expressions.By integrating and modifying expression groups,a mathematical model for recognizing optical characters is established.Then we evaluate and optimize the model and calculate the accuracy of the prediction of the experimental model.
作者 王爱爱 刘志立 WANG Ai-ai;LIU Zhi-li(North China University of Technology to Yisheng Innovation Education Base,Hebei Tangshan 063210,China)
出处 《新一代信息技术》 2019年第7期19-30,共12页 New Generation of Information Technology
关键词 光学符号识别 后处理系统 倒数-高斯级联低通滤波 灰度值 Inverse-Gaussian cascade low-pass filtering gray value for optical symbol recognition post-processing system
  • 相关文献

参考文献4

二级参考文献22

  • 1丁绪星,朱日宏,李建欣.一种静止图像质量评价指标[J].南京理工大学学报,2004,28(5):507-510. 被引量:8
  • 2吴德会,朱程辉.基于主方向检测的畸变车牌字符图像校正方法[J].自动化技术与应用,2005,24(4):16-18. 被引量:9
  • 3李伟,庞其昌,李洪,靳贵平.小波变换在紫外图像融合中的应用[J].科学技术与工程,2005,5(15):1067-1069. 被引量:6
  • 4刘云鹏,马国明,刘肇鸥,律方成,杨晓琳.低通滤波在紫外成像降噪处理中的应用[J].高电压技术,2007,33(6):129-132. 被引量:7
  • 5William Group, E Luck, A Skjellum. Using MPI: Portable Parallel Programming with the Message Passing Interface (2nd Edition ) [M]. MIT Press, Cambridge, MA, 1999.23-28.
  • 6Yimei Ding, Wataru Ohyama, Fumitaka Kimura. Local slant estimation for handwritten English words[J]. Frontiers in Handwriting Recognition,2004. IWFHR- 9 2004. Ninth International Workshop on 26 - 29 Oct. 2004. 328 - 333.
  • 7Donggang Yu, Hong Yan. An efficient algorithm for smoothing,linearization and detection of structural feature points of binary image contours[ J]. Pattern Recognition, 1996, Proceedings of the 13th Intemational Conference, 1996,2:403 -407.
  • 8陈春宁,王延杰.在频域中利用同态滤波增强图像对比度[J].微计算机信息,2007(02X):264-266. 被引量:60
  • 9Handwritten Numerals by Double Self-organizing Neural Network[C].Proceedings of the 13^th International Conference on Pattern Recognition, Vienna: IEEE Press, 1996:426-430.
  • 10Ho T K, Hull J J, Srihari S N. Decision Combination in Multiple Classifier System[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16 (1): 66-75.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部