期刊文献+

一种基于深度图像的静态手势神经网络识别方法 被引量:3

A static gesture recognition method based on depth image and neural network
原文传递
导出
摘要 静态手势识别是以手势驱动的人机交互系统的核心技术。针对静态手势识别问题,提出了一种基于深度图像进行静态手势识别的方法。为了消除静态手势识别过程中的平移、旋转和缩放不变性,提取手势轮廓的Hu不变矩,并以Hu不变矩作为特征构建静态手势深度感知神经网络模型,以此实现对静态手势进行分类识别。在VisualStudio的开发环境下实现了对该方法的验证,取得了良好的效果,并与传统的模板匹配法与基于卷积神经网络的深度学习方法作比较,静态手势识别准确率总体可达95%,识别效率高,能满足实时性要求。 Static gesture recognition is the key technology of human-computer interaction system driven by gesture.To solve the problem of static gesture recognition,a method of static gesture recognition based on depth image is proposed.In order to eliminate the invariance of translation,rotation and scaling in the process of static gesture recognition,the Hu moment of gesture contour is extracted based on Hu moment theory,and the static gesture depth perception neural network model is constructed with Hu moment as the feature.In this way,static gestures are classified and recognized.The method is validated under the development environment of VisualStudio,and the result is fine.It is compared with the traditional template matching method and the depth learning method based on convolution neural network.The accuracy of static gesture recognition in this paper is high,and the recognition efficiency is high and it can meet the real-time requirements.
作者 彭理仁 王进 林旭军 陆国栋 PENG Liren;WANG Jin;LIN Xujun;LU Guodong(Zhejiang University,Hangzhou 310027,China)
出处 《自动化与仪器仪表》 2020年第1期6-9,15,共5页 Automation & Instrumentation
基金 国家重点研发计划课题(No.2017YFB1301203)
关键词 深度图像 静态手势识别 HU矩 神经网络 depth image static gesture recognition Hu moment neural network
  • 相关文献

参考文献3

二级参考文献27

  • 1王学良.防错设计原理剖析及其在航空工业企业的应用[J].航空标准化与质量,2009(6):9-12. 被引量:5
  • 2郭兴伟,葛元,王林泉.基于形状特征的字母手势的分类及识别算法[J].计算机工程,2004,30(18):130-132. 被引量:11
  • 3张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 4于鸿彬,郭伟,赵家黎.面向防错的混合装配线物流监控[J].计算机集成制造系统,2007,13(4):751-755. 被引量:4
  • 5Liu Y, Gan Z J, Su Y. Static hand gesture recognition and its application based on support vector machines [C] // Proceedings of the 9th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, Phuket, 2008:517-521.
  • 6Park H S, Kim E Y, Jang S S. HMM-based gesture recognition for robot control [M]//Lecture Notes in Computer Science. Heidelberg: Springer, 2005, 3522: 607-614.
  • 7Liu H, Feng S Q, Zha H B, et al. Document image retrieval based on density distribution feature and key block feature [C] //Proceedings of the 8th International Conference on Document Analysis and Recognition. Washington D C: IEEE Computer Society Press, 2005:1040-1044.
  • 8王修晖,鲍虎军.基于自适应遗传算法的手势识别[J].计算机辅助设计与图形学学报,2007,19(8):1056-1062. 被引量:16
  • 9Kelly D,McDonald J,Markham C.A Person Independent System for Recognition of Hand Postures Used in Sign Language[J].Pattern Recognition Letters,2010,31(11):1359-1368.
  • 10Wang Chieh-Chih,Wang Ko-Chih.Hand Posture Recognition Using Adaboost with Sift for Human Robot Interaction[C]//Proc.of International Conference on Advanced Robotics.Jeju Island,Korea:[s.n.],2007.

共引文献121

同被引文献16

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部