期刊文献+

基于AM的BLSTM网络电商评论情感倾向分类 被引量:4

Sentiment classification of online retailer reviews based on AM and BLSTM networks
下载PDF
导出
摘要 针对电商评论中所包含的消费者情感倾向信息问题,提出一种基于注意力机制和双向长短期记忆(bidirectional long-short term memory,BLSTM)网络的情感倾向分类模型。该模型使用预训练的字向量作为输入特征,通过双向长短期记忆网络来学习文本的语义特征。依此特征,设计了一种新的注意力机制来捕捉BLSTM模型生成的文本语义特征中重要的信息,以降低文本中冗余噪声对于情感倾向分类的影响。实验结果表明,与传统机器学习方法以及长短期记忆模型和双向长短期记忆模型相比,所提出模型在电商评论的情感倾向分类上取得了较好的结果。 Aiming at the problem of consumer sentiment information contained in e-commerce reviews,a sentiment classification model based on attention model and bidirectional long short term memory(BLSTM)network is proposed.The model uses the pre-trained word vector as the input feature,and learns the semantic features of the text through the two-way short-term memory network.On this basis,a new attention mechanism is designed to capture the important information in the text semantic features generated by blstm model,so as to reduce the impact of redundant noise on sentiment classification.The experimental results show that compared with the traditional machine learning method,the short-term memory model and the two-way short-term memory model,the proposed model has achieved better results in the classification of e-commerce comments' emotional tendencies。
作者 梁海霞 张凌东 贾蓉 LIANG Haixia;ZHANG Lingdong;JIA Rong(Department of propaganda,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;The first military representative office,Rocket Army in Beijing,Beijing 214025,China;School of Computer Science and Technology,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《西安邮电大学学报》 2019年第5期74-80,共7页 Journal of Xi’an University of Posts and Telecommunications
基金 陕西省软科学基金资助项目(2018KRM079)
关键词 情感倾向分类 注意力机制 双向长短期记忆网络 电商评论 sentiment classification attention model bidirectional long short term memory online retailer reviews
  • 相关文献

参考文献1

二级参考文献39

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 4姚天昉,等.一个用于汉语汽车评论的意见挖掘系统[A].中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集[C].北京:清华大学出版社,2006,260-281.
  • 5S.-M. Kim and E. Hovy. Determining the Sentiment of Opinions [A]. In: Proceedings of COLING-04, the Conference on Computational Linguistics (COLING-2004) [C]. Geneva, Switzerland: 2004, 1367-1373.
  • 6J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment Analyzer; Extracting Sentiments about a Given Topic using Natural Language Processing Techniques [A]. In: Proceedings of the 3rd IEEE International Conference on Dala Mining (ICDM-2003) [C]. Melbourne, Florida: Z003, 427-434.
  • 7M. Hu and B. Liu. Mining Opinion Features in Cus tomer Reviews [A]. In: Proceedings of Nineteeth Na tional Conference on Artificial Intellgience (AAAI 2004) [C]. San Jose, USA: 2004.
  • 8A. M. Popescu and O. Etzioni. Extracting Product Features and Opinions from Reviews [A]. In: Proceedings of HI.T EMNLP-05, the Human Language Technology Conference/Conference on Empirical Methods in Natural Language Processing [C]. Vancouver, Canada.. 2005, 339-346.
  • 9X. Cheng. Automatic Topic Term Detection and Sentiment Classification for Opinion Mining [D]. Master Thesis. Saarbr cken, Germany: The University of Saarland, 2007.
  • 10S. Bethard, H. Yu, A. Thornton, V. Hatzivassiloglou, and D. Jurafsky. Automatic Extraction of Opinion Propositions and their Holders [A]. In.. J. G.Shanahan et al. (eds). Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications [C]. Stanford, USA: 2004.

共引文献105

同被引文献22

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部