摘要
设计了一套基于表面肌电信号(sEMG)的非接触式操控手机系统。利用STM32控制表面肌电电极采集sEMG,通过在执行不同手势时sEMG本身的差异,使用BP神经网络分类器实现手势识别并操控手机。实验结果表明,该系统具有良好的稳定性,且响应速度快,平均识别率达到92%,符合预期。
A non-contact mobile phone system based on Surface Electromyography(sEMG)is designed.STM32 is used for control surface electromyographic electrodes which are used for data acquisition,and the system using BP neural network classifier to recognize the gesture models and control mobile phones based on the difference of sEMG signal.The experiment results show that the system runs stably and responds quickly and the recognition accuracy is 92%,that achieves the goal smoothly.
作者
张莉
刘晓露
王朝
宋易铭
Zhang Li;Liu Xiaolu;Wang Chao;Song Yiming(College of Instrumentation&Electrical Engineering,Jilin University,Changchun 130026,China)
出处
《单片机与嵌入式系统应用》
2020年第3期34-37,共4页
Microcontrollers & Embedded Systems
基金
国家重点研发计划中国人体特性测量及应用关键技术标准研究(2017YFF0206601)
吉林大学大学生创新项目(2018B6511)