期刊文献+

Computer‑aided CT image processing and modeling method for tibia microstructure 被引量:1

下载PDF
导出
摘要 We present a method for computed tomography(CT)image processing and modeling for tibia microstructure,achieved by using computer graphics and fractal theory.Given the large-scale image data of tibia species with DICOM standard for clinical applications,we take advantage of algorithms such as image binarization,hot pixel removing and close operation to obtain visually clear image for tibia microstructure.All of these images are based on 20 CT scanning images with 30μm slice thickness and 30μm interval and continuous changes in pores.For each pore,we determine its profile by using an improved algorithm for edge detection.Then,to calculate its three-dimensional fractal dimension,we measure the circumference perimeter and area of the pores of bone microstructure using a line fitting method based on the least squares.Subsequently,we put forward an algorithm for the pore profiles through ellipse fitting.The results show that the pores have significant fractal characteristics because of the good linear correlation between the perimeter and the area parameters in log–log scale coordinates system,and the ratio of the elliptical short axis to the long axis through ellipse fitting tends to 0.6501.Based on support vector machine and structural risk minimization principle,we put forward a mapping database theory of structure parameters among the pores of CT images and fractal dimension,Poisson’s ratios,porosity and equivalent aperture.On this basis,we put forward a new concept for 3D modeling called precision-measuring digital expressing to reconstruct tibia microstructure for human hard tissue.
出处 《Bio-Design and Manufacturing》 CSCD 2020年第1期71-82,共12页 生物设计与制造(英文)
基金 supported by the National Key Research and Development Program of China(No.2016YFC1100600) the National Nature Science Foundation of China(Nos.61540006,61672363).
  • 相关文献

参考文献4

二级参考文献43

  • 1A. Pentland, B. Moghaddam, and T. Starner, in Proceedings of IEEE Conference on Computer Vision & Pattern Recognition 84 (1994).
  • 2A. L. Yuille, P. W. Hallinan, and D. S. Cohen, Int. J. Cornput. Vis. 8, 99 (1992).
  • 3K.-M. Lam and H. Yan, Pattern Recogn. 29~ 771 (1996).
  • 4D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, IEEE Trans. Pattern Anal. Mach. Intell. 15, 850 (1993).
  • 5B. Guo, K.-M. Lam, K.-H. Lin, and W.-C. Siu, Pattern Recogn. Lett. 24, 499 (2003).
  • 6X. Chen, Z. Jing, S. Sun, and G. Xiao, Chin. Opt. Lett. 2, 694 (2004).
  • 7J. Li and J.-S. Pan, Chin. Opt. Lett. 6~ 255 (2008).
  • 8S. Marcel, Y. Rodriguez, and G. Heusch, International Journal of Image and Video Processing, Special Issue on Facial Image Processing 1 (2007).
  • 9K. J. Kirchberg, O. Jesorsky, and R. W. Frischholz, Lecture Notes in Computer Science 2359, 103 (2002).
  • 10S. Haykin, Neural Networks: A Comprehensive Foundation (2nd edn.)(Prentice Hall, Englewood Cliffs, 1998).

共引文献34

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部