期刊文献+

静电纺三维蓬松结构非织造材料的制备及其性能研究

Study on preparation and properties of electrospun three-dimensional fluffy structure nonwovens
下载PDF
导出
摘要 采用静电纺丝方法,在纤维接收区域施加均匀的水雾,制备具有三维(3D)蓬松结构的醋酸丁酸纤维素(CAB)非织造材料,并利用溶剂二氯甲烷(DCM)蒸气交联以提高材料的力学性能,研究交联时间对纤维整体形貌和结构的影响,并比较3D蓬松结构非织造材料与常规静电纺纳米纤维膜的过滤性能。结果表明:当喷雾装置的风速为1.3 m/s、水雾浓度为5.25 mL/m 3时,可以获得3D蓬松结构非织造材料;当DCM蒸气压为47.19 kPa时,3D蓬松结构非织造材料最佳的交联时间为30 min,此时仅纤维交叉点发生交联,材料的整体结构未受到破坏;DCM蒸气交联30 min的3D蓬松结构非织造材料较常规静电纺纳米纤维膜具有更优的过滤性能和容尘能力。 Cellulose acetate butyrate(CAB)nonwovens with three-dimensional(3D)fluffy structure were prepared by electrospinning method with applying uniform water mist onto the deposition area of fibers,and then the mechanical properties of the materials were improved through the solvent dichloromethane(DCM)vapor crosslinking.The effects of crosslinking time on the overall morphology and structure of fiber were studied.And the filtration performance of the 3D fluffy structure nonwovens was compared with that of the conventional electrospun nanofiber membranes.The results showed that the 3D fluffy structure nonwovens could be obtained when the wind speed was 1.3 m/s and the water mist concentration was 5.25 mL/m 3.When the DCM vapor pressure was 47.19 kPa,the optimal crosslinking time was 30 min.And at this point,only crosslinking occured at the fibers intersection,and the overall structure of the materials remained unspoiled.The 3D fluffy structure nonwovens crosslinked by DCM vapor for 30 min had better filtration performance and dust holding capacity than the conventional electrospun nanofiber membranes.
作者 徐洋 黄晨 Xu Yang;Huang Chen(Engineering Research Center of Technical Textiles,Ministry of Education,Donghua University,Shanghai 201620,China)
出处 《产业用纺织品》 北大核心 2019年第12期12-18,共7页 Technical Textiles
关键词 醋酸丁酸纤维素 三维蓬松结构非织造材料 静电纺丝 蒸气交联 空气过滤 水雾 cellulose acetate butyrate three-dimensional fluffy structure nonwoven electrospun vapor crosslink air filtration water mist
  • 相关文献

参考文献2

二级参考文献78

  • 1Song M Y, Kim D K, lhn K J, et al. New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells[J]. Synthetic Metals, 2005, 153(1-3): 77-80.
  • 2Chen J Y, Chen H C, Lin J N, et al. Effects of polymer media on electrospun mesoporous titania nanofibers[J]. Materials Chemistry and Physics, 2008, 107(2-3): 480-487.
  • 3Madhugiri S, Sun B, Smimiotis P G, et al. Electrospun mesoporous titanium dioxide fibers[J]. Microporous and Mesoporous Materials, 2004, 69(1-2): 77-83.
  • 4Kanehata M, Ding B, Shiratori S. Nanoporous ultra-high specific surface inorganic fibres[J].Nanotechnology, 2007, 18(31): 315602.
  • 5Lim J, Yi G, Moon J H, et al. Superhydrophobic films of electrospun fibers with multiple-scale surface morphology[J]. Langmuir, 2007, 23(15): 7981-7989.
  • 6Madhugiri S, Zhou W, Ferraris J P, et al. Electrospun mesoporous molecular sieve fibers[J]. Microporous and Mesoporous Materials, 2003, 63(1-3): 75-84.
  • 7Macias M, Chacko A, Ferraris J P, et al. Electrospun mesoporous metal oxide fibers[J]. Microporous and Mesoporous Materials, 2005, 86(1-3): 1-13.
  • 8Zhan S H, Chen D R, Jiao X L, et al. Long TiO2 hollow fibers with mesoporous walls: Sol-gel combined electrospun fabrication and photocatalytic properties[J].Journal of Physical Chemistry B, 2006, 110(23): 11199-11204.
  • 9Zhan S H, Chen D R, Jiao X L, et al. Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties[J]. Chemical Communications, 2007(20): 2043-2045.
  • 10Zhang Y, Kang X, Chen L, et al. Fiber-packed SPE tips based on electrospun fibers[J]. Analytical and Bioanalytical Chemistry, 2008, 391(6): 2189-2197.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部