期刊文献+

一种基于水平集的胸部淋巴结全自动分割算法

Automatic Chest Lymph Node Segmentation Based on Level Set Approach
下载PDF
导出
摘要 肺癌是世界上发病率和死亡率最高的恶性肿瘤。现阶段,临床主要通过淋巴结病变程度判断肺癌恶性程度和预后情况。针对淋巴结的解剖特征及全身分散的问题,本文提出了一种全自动检测和分割胸部病变淋巴结的方法,首先利用全自动解剖识别方法自动识别定位PET-CT影像中的所有淋巴结区域,然后检测每个淋巴结区域中潜在的病变淋巴结,第三步采用水平集模型完成对各个淋巴结区域内部病变淋巴结的精准分割。算法分割精度率平均达到85%。 Lymph node detection is challenging due to the low contrast between lymph nodes as well as surrounding soft tissues and the variation in nodal size and shape.Currently,the degree of malignancy and prognosis of lung cancer are mainly determined by the degree of lymph node lesions.Aiming at the anatomical features of lymph nodes and the problem of systemic dispersal,this paper proposes a method for fully automatic detection and segmentation of thoracic lymph nodes.Firstly,the automatic anatomical recognition method is used to automatically identify and locate all lymph node regions in PET-CT images,and then detect each.The potential lymph nodes in the lymph node area are detected.The third step uses the level set model to complete segmentation of the diseased lymph nodes in each lymph node region.The algorithm segmentation accuracy rate averages 85%.
作者 宋懿花 葛晨 宋宁宁 周作建 SONG Yi-hua;GE Chen;SONG Ning-ning;ZHOU Zuo-jian(School of Artificial Intelligence and Information Technology,Nanjing University of Chinese Medicine,Nanjing 210023,China;Inspur Electronic Information Industry Co.,Jinan 250013,China;Nanjing First Hospital,Nanjing 210000,China)
出处 《软件》 2020年第2期44-48,共5页 Software
基金 国家重点研发计划资助(批准号:2018YFC1704400)
关键词 肺癌 PET-CT 淋巴结区域 水平集 检测与分割 Lung cancer PET-CT Lymph node zone Level set Detection and segmentation
  • 相关文献

参考文献5

二级参考文献47

  • 1闫志鸿,胡婷,宋永伦.铝合金方波交流TIG焊熔池图像处理[J].新型工业化,2013,2(10):61-66. 被引量:8
  • 2周仲兴,朱庆阵,赵会娟,高峰.基于维纳解卷积技术的数字放射成像系统的过采样调制传递函数测量新方法(英文)[J].新型工业化,2013,2(3):58-66. 被引量:2
  • 3黄思军,王飞龙,许志祥,孙秋冬.图象处理技术在X射线自动检测中的应用[J].无损检测,1989,11(4):99-101. 被引量:3
  • 4白雪.基于三马尔可夫场的SAR图像分割[D].西安电子科技大学2012
  • 5Xiu-Fen Ye,Zhe-Hui Zhang,Peter X. Liu,Hong-Ling Guan.Sonar image segmentation based on GMRF and level-set models[J]. Ocean Engineering . 2010 (10)
  • 6Geman S,Geman D.Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1984
  • 7W. Chou."Maximun a posterior linear regression with elliptically symmetric matrix variate priors". Eurospeech . 1999
  • 8Blake,Andrew.Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1989
  • 9Lakshmanan, Sridhar,Derin, Haluk.Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1989
  • 10Besag J.Spatial interaction and the statistical analysis of lattice systems. Journal of Royal Statistical Society (Serial B) . 1974

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部