期刊文献+

基于注意力机制和特征融合的SSD目标检测算法 被引量:1

SSD Target Detection Algorithm Based on Attention Mechanism and Feature Fusion
下载PDF
导出
摘要 为提高SSD算法对于小目标的检测能力和定位能力,本文提出一种引入注意力机制和特征融合的SSD算法。该算法在原始SSD模型的基础上,通过将全局池化操作作用于高层的不同尺度的特征图上,结合注意力机制筛选出需要保留的信息。为提高对小目标的检测精度,本文引入反卷积和特征融合的方式,提高对小目标的检测能力。通过在PASCAL VOC数据集上的实验表明,该算法有效的提升了对小目标识别的准确率,改善了漏检的情况,大幅度提升了检测精度和算法的鲁棒性。 In order to improve the ability of SSD algorithm to detect and locate small objects,this paper proposes an SSD algorithm that introduces attention mechanism and feature fusion.On the basis of the original SSD model,the algorithm combined with the attention mechanism to screen out the information that needs to be retained by applying the global pooling operation on the feature graphs of different scales at the high level.In order to improve the detection accuracy of small targets,deconvolution and feature fusion are introduced in this paper to improve the detection ability of small targets.Experiments on PASCAL VOC data set show that the algorithm can effectively improve the accuracy of small target recognition,improve the situation of missing detection,and greatly improve the detection accuracy and robustness of the algorithm.
作者 高建瓴 孙健 王子牛 韩毓璐 冯娇娇 GAO Jian-ling;SUN Jian;WANG Zi-niu;HAN Yu-lu;FENG Jiao-jiao(school of big data and information engineering,guizhou university,guiyang 550025,China)
出处 《软件》 2020年第2期205-210,共6页 Software
关键词 注意力机制 SSD算法 全局平均池化 特征融合 PASCAL VOC数据集 Attention mechanisms SSD algorithm Global average pooling Feature fusion PASCAL VOC data set
  • 相关文献

参考文献7

二级参考文献83

  • 1蔡林沁,郑雪松,王牛.基于HSV颜色空间正交立体视觉目标检测[J].新型工业化,2013,2(1):79-88. 被引量:10
  • 2贾澎涛,何华灿,刘丽,孙涛.时间序列数据挖掘综述[J].计算机应用研究,2007,24(11):15-18. 被引量:77
  • 3Stephen J. McKenna,Sumer Jabri,Zoran Duric,Azriel Rosenfeld,Harry Wechsler.Tracking Groups of People[J]. Computer Vision and Image Understanding . 2000 (1)
  • 4罗强.移动目标的跟踪技术研究[D].武汉理工大学2009
  • 5Xia R,Xu F,Zong CQ,Li QM,Qi Y,Li T.Dual Sentiment Analysis:Considering Two Sides of One Review. IEEE Transactions on Knowledge and Data Engineering . 2015
  • 6Pedro F. Felzenszwalb,Daniel P. Huttenlocher.Pictorial Structures for Object Recognition[J]. International Journal of Computer Vision . 2005 (1)
  • 7Zoran Zivkovic,Ferdinand van der Heijden.??Efficient adaptive density estimation per image pixel for the task of background subtraction(J)Pattern Recognition Letters . 2005 (7)
  • 8Agrawal R,Imielinske T,Swami A.Mining association rules between sets of items in large databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data . 1993
  • 9Stauffer C,Grimson WEL.Learning Patterns of Activity Using Real-Time Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000
  • 10Felzenszwalb P.F,McAllester D,Ramanan D.A discriminatively trained,multiscale,deformable part model. Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition . 2008

共引文献137

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部