期刊文献+

基于图结构的城市出租车交通流量可视化 被引量:1

Visualization of urban taxi traffic flow based on graph structure
下载PDF
导出
摘要 为了更好地分析出租车在城市区域中的运行规律,提出一种基于图结构的城市交通流量可视化分析方法。通过对路网进行聚类,将路网连接路段划分为区域结构,并用点-线连接形式表示城市路网,同时以区域车流量为权重,结合图中心性概念对区域重要性进行了分析。以北京市四环为例,对一亿多条出租车GPS数据进行可视化分析,实验结果表明,该方法可以直观有效地展现不同区域的出租车流量随时间变化规律和不同区域的重要程度。 With the development of information technology,massive traffic data is exploited for traffic behavior analysis.In particular,taxi trajectory data plays an important role in traffic analysis.In order to better explore the traffic law of taxis in urban traffic operation,a graph based visual method is applied to the analysis of urban traffic flow in this paper.First,the road-level graph is converted into a region-level graph through clustering all road segments,then the node-line connection between regions presents the urban road network structure.Meanwhile,taking the regional traffic as the weight,the importance of the regions is analyzed by combining graph centrality.Finally,this approach is implemented and evaluated by using more than 100 million taxi trajectories data within the fourth ring of Beijing.The experiment results indicate that the proposed method can intuitively show the variation of taxi flow in different regions over time and reveal effectively the importance of different regions.
作者 张伟明 张勇 刘浩 孙艳丰 ZHANG Weiming;ZHANG Yong;LIU Hao;SUN Yanfeng(Information Department,Beijing University of Technology,Beijing 100124,China;Beijing Transportation Information Center,Beijing 100161,China)
出处 《太赫兹科学与电子信息学报》 北大核心 2020年第1期150-154,共5页 Journal of Terahertz Science and Electronic Information Technology
基金 北京市科技计划基金资助项目(Z171100000517003 Z171100000517004 Z161100001116072 Z171100004417023) 北京市教委基金资助项目(KM201510005025 KM201610005033)
关键词 出租车GPS 图结构 流量 可视化 taxi GPS graphic structure flow visualization
  • 相关文献

参考文献1

二级参考文献99

  • 1Keim D, Andrienko G, Fekete J. D, et al. Visual analytics:Definition, process, and challenges [M]. Information Visualization,Heidelberg: Springer, 2008: 154–175.
  • 2Wang Z, Lu M, Yuan X, et al. Visual traffic jam analysis basedon trajectory data [J]. IEEE Transactions on Visualization andComputer Graphics, 2013, 19(12): 2159–2168.
  • 3Parent C, Spaccapietra S, Renso C, et al. Semantic trajectoriesmodeling and analysis [J]. ACM Computer Survey, 2013, 45(4):42:1–42:32.
  • 4Zheng Y, Zhou X, eds. Computing with spatial trajectories [M].New York: Springer, 2011.
  • 5Andrienko G, Andrienko N, Bak P, et al. Visual Analytics ofMovement [M]. New York: Springer, 2013.
  • 6Dodge S, Weibel R, Lautenschütz A. K. Towards a taxonomyof movement patterns [J]. Information Visualization, 2008, 7(3):240–252.
  • 7Andrienko G, Andrienko N, Dykes J, et al. Geovisualization ofdynamics, movement and change: key issues and developingapproaches in visualization research [J]. Information Visualization,2008, 7(3): 173–180.
  • 8Andrienko N, Andrienko G. Visual analytics of movement: anoverview of methods, tools, and procedures [J]. InformationVisualization, 2013, 12(1): 3–24.
  • 9OpenDataCity, Visitor flow analysis by publica wireless [OL].[2014-11-06]. http://apps.opendatacity.de/relog.
  • 10Guo H, Wang Z, Yu B, et al. Tripvista: Triple perspective visualtrajectory analytics and its application on microscopic trafficdata at a road intersection [C] // Proceedings of IEEE PacificVisualization Symposium. Los Alamitos: IEEE Computer SocietyPress, 2011: 163 –170.

共引文献39

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部