期刊文献+

基于表达和反应耦联的羟基化酶催化合成反式-4-羟基-L-脯氨酸 被引量:1

Synthesis of trans-4-hydroxy-L-proline by hydroxylase via coupling enzyme expression and catalytic reaction
下载PDF
导出
摘要 反式-4-羟基-L-脯氨酸(trans-4-Hpro)是药物合成中一种重要的中间体,可以用来合成碳青霉烯类抗生素类高附加值药物。目前,已有许多通过生物催化转化trans-4-Hpro的研究,但如何利用有限的酶资源实现其高效转化是难点。本文中,笔者基于已知脯氨酸4羟基化酶(GenBank No.BAA20094.1)的基因序列,利用基因挖掘工具获得Kutzneria albida来源的新型羟基化酶Ka PH1,以L-脯氨酸为底物,构建羟基化酶表达和反应过程耦联催化合成trans-4-Hpro的耦联反应体系。结果表明,Escherichia coli pET-28a-Ka PH1(E.coli Ka PH1)菌株具有高效催化合成反式-4-羟基-L-脯氨酸的能力,通过对E.coli Ka PH1催化体系的优化,以20 mmol/L L-脯氨酸作为底物,外源添加等摩尔浓度的2酮戊二酸,产量最高达到1246 mg/L,比优化前(1051 mg/L)提高了18.5%。进一步对表达和反应的耦联过程进行调控,反应体系中不添加2酮戊二酸,在底物浓度为20 mmol/L时,产量最高达到2223 mg/L,转化率为84.8%;在底物浓度为100 mmol/L时,产量最高达到7860 mg/L,转化率为59.9%。 Trans-4-hydroxy-L-proline(trans-4-Hpro)is an important intermediate in pharmaceutical synthesis,which can be used to synthesize high value-added drugs,such as carbapenem antibiotics.At present,there have been many studies on biotransformation of trans-4-Hpro,but how to use the limited enzyme resources to achieve its efficient transformation is difficult.Based on the gene sequence of L-proline 4-hydroxylase(GenBank No.BAA20094.1),a novel hydroxylase Ka PH1 from Kutzneria albida was obtained by gene mining.Ka PH1 was highly efficient for the synthesis of trans-4-hydroxy-L-proline in Escherichia coli pET-28a-Ka PH1.Then the efficient coupling system was established by optimizing the enzyme expression of Ka PH1 and the synthesis of trans-4-hydroxy-L-proline with L-proline as the substrate.The yield of trans-4-hydroxy-L-proline reached 1246 mg/L with 20 mmol/L L-proline through the optimization of whole cell transformation system,18.5%higher than the initial level(1051 mg/L).Furthermore,after regulation of the coupling process involving enzyme expression and catalytic reaction,the optimized yield of trans-4-hydroxy-L-proline was achieved as 2223 mg/L with the conversion rate of 84.8%for 20 mmol/L L-proline;when the substrate concentration was 100 mmol/L,the optimized yield of trans-4-hydroxy-L-proline reached the highest level(7860 mg/L)with the conversion rate of 59.9%.
作者 景晓冉 聂尧 徐岩 JING Xiaoran;NIE Yao;XU Yan(Key Laboratory of Industrial Biotechnology of the Ministry of Education,School of Biotechnology,Jiangnan University,Wuxi 214122,China;State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi 214122,China)
出处 《生物加工过程》 CAS 2020年第1期106-115,共10页 Chinese Journal of Bioprocess Engineering
基金 国家自然科学基金(21336009、21676120) 江苏省“六大人才”高峰计划(2015-NY-007) 江苏高校优势学科建设工程
关键词 羟基化酶 反式-4-羟基-L-脯氨酸 基因挖掘 生物催化 耦联反应 酶资源 hydroxylase trans-4-hydroxy-L-proline gene mining biocatalysis coupling reaction enzyme resource
  • 相关文献

二级参考文献26

  • 1刘均洪,吴小飞,李凤梅,苏忠亮,张媛媛.加氧酶催化生物转化研究最新进展[J].化工生产与技术,2006,13(4):36-39. 被引量:6
  • 2张自强,赵东旭,杨新林.羟脯氨酸的研究与开发[J].氨基酸和生物资源,2006,28(1):55-58. 被引量:39
  • 3Remuzon P.Trans.4.hydroxy.L.proline,a useful and versatile chiralstarting block[J].Tetrahedron,1996,52(44):13803-13835.
  • 4Trost B M, Brindle C S. The direct catalytic asymmetric aldolreaction[J].Chem Soc Rev,2010,39(5):1600-1632.
  • 5Wu G, Bazer F W, Burghardt R C, et al. Proline andhydroxyproline metabolism: implications for animal and humannutrition[J].Amino Acids,2011,40(4):1053-1063.
  • 6Phang J M,Donald S P,Pandhare J,et al. The metabolism ofproline,a stress substrate,modulates carcinogenic pathways[J].Amino Acids,2008,35(4):681-690.
  • 7Jurczak J,Prokopowicz P.Highly stereoselective synthesis of cis.(2R,3S).3.hydroxyproline[J].Tetrahedron Lett,1993,34(44):7107-7110.
  • 8Katz E, Prockop D J, Undenfriend S. Precursors of thehydroxyproline and ketoproline in actinomycin[J].J Biol Chem,1962,237(6):1585.1588.
  • 9Katz E, Kamal F, Mason K. Biosynthesis of trans.4.hydroxy.L.proline by Streptomyces griseoviridus[J].J Biol Chem,1979,254(14):6684-6690.
  • 10Shibasaki T, Mori H, Chiba S, et al. Microbial proline 4.hydroxylase screening and gene cloning [J]. Appl EnvironMicrobiol,1999,65(9):4028-4031.

共引文献15

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部