摘要
针对复杂的网络舆情数据,传统的模型预测已经无法对大数据背景下的舆论趋势进行有效的预测,因此,提出一种基于EMD.ARXG(经验模态分解⁃自回归)改进的组合模型来应对复杂的网络舆情预测,该模型弥补了单一预测算法的缺陷,提高了预测模型的准确性。以“韩国萨德”事件和“全国两会”事件作为舆情热点对其进行预测实验,引入WNN(小波神经网络)与EMD⁃BPNN(BP神经网络)进行舆情预测,并与EMD.ARXG模型进行实验对比,实验结果证明,EMD.ARXG模型具有较好的预估准确度。
Since the network public opinion data is complex,traditional model prediction has been unable to effectively predict the trend of public opinion under the background of large data.Therefore,an improved combination model based on EMD.ARXG(empirical mode decomposition⁃autoregression)is proposed to deal with complex network public opinion prediction.This model makes up for the shortcomings of a single prediction algorithm and improves the accuracy of the prediction model.Taking the events of"THAAD in Korea"and"NPC&CPPCC"as the hotspots of public opinion,WNN(wavelet neural network)and EMD⁃BPNN(BP neural network)is introduced to predict public opinion,and compares them with the EMD.ARXG model.The experimental results show that the EMD.ARXG model has better prediction accuracy.
作者
于营
刘开南
杨婷婷
刘小飞
周雪
YU Ying;LIU Kainan;YANG Tingting;LIU Xiaofei;ZHOU Xue(School of Information and Intelligent Engineering,University of Sanya,Sanya 572022,China;Chen Guoliang Academician Workstation,University of Sanya,Sanya 572022,China)
出处
《现代电子技术》
北大核心
2020年第3期82-86,共5页
Modern Electronics Technique
基金
海南省高等学校科学研究项目(Hnky-201969)
三亚学院“一师一项目”专项科学研究课题(USY18YSK015)
三亚市科技工业信息化局项目(2015YD49)
关键词
网络舆情预测
EMD.ARXG模型
经验模态分解
短期预测
组合模型
预测实验
network public opinion prediction
EMD.ARXG model
empirical mode decomposition
short⁃term prediction
composite model
prediction experiment