期刊文献+

基于SEIR模型对武汉市新型冠状病毒肺炎疫情发展趋势预测 被引量:26

Prediction of development trend of COVID-19 in Wuhan based on SEIR model
下载PDF
导出
摘要 目的预测武汉市新型冠状病毒肺炎(新冠肺炎)疫情的发展趋势及不同管控开始时间、管控强度对新冠肺炎疫情的影响。方法收集2020年1月20日~2月18日武汉市新冠肺炎疫情的相关数据,利用Matlab构建SEIR模型,模拟新冠肺炎疫情发展趋势,利用Pearson相关性检验分析模拟的武汉市新冠肺炎疫情与实际疫情的相关性,加入不同管控时效(即自1月23日武汉封城后第10天,第15天和第20天开始管控)和不同管控强度(即易感者分别接触10、7、3例)等参数分析防控策略对武汉市新冠肺炎疫情发展的影响。结果SEIR模型模拟的武汉市新冠肺炎疫情拐点出现在武汉封城后第35天,即2月底,同时新冠肺炎疫情在4月底基本得到控制。SEIR模型模拟的武汉市新冠肺炎疫情发展情况与实际新冠肺炎疫情的相关系数为0.96(P<0.05)。与1月23日武汉封城后第15、20天开始管控相比,第10天开始管控的新冠肺炎疫情感染者峰值分别减少160.95%和98.67%。易感者接触3例比易感者分别接触10、7例的新冠肺炎疫情感染者峰值分别下降49.21%和34.84%。结论现有管控措施影响下,基于SEIR模型预测的武汉市新冠肺炎疫情拐点出现在武汉封城后第35天,与实际已经发生的新冠肺炎疫情符合,新冠肺炎疫情基本在4月底可得到控制。越早开始管控并且管控强度越大,对新冠肺炎疫情的干预越有效,宜尽早切断传播途径。 Objective To predict the development trend and the intervention effects of different control start time and control intensity on coronavivus disease 2019(COVID19)epidemic in Wuhan,and to provide the prevention and control strategies for COVID19.Methods We collected the relevant data of COVID19 epidemic in Wuhan from Jan.20 to Feb.18,2020,and built a SEIR model through Matlab to simulate the development trend of the epidemic situation.In addition,Pearson correlation analysis was utilized to analyze the correlation between simulated epidemic situation and actual epidemic situation.Some parameters were added to analyze the influence of prevention and control strategies on the development of the epidemic situation such as different control time,namely,from the 10th,15th and 20th days after Jan.23(the day Wuhan was locked down),and different control intensity,meaning that the susceptible persons exposed to 10,7 and 3 people,respectively.Results The inflection point of COVID19 simulated by the SEIR model appeared on the thirtyfifth day,which was the end of February,and the epidemic would be basically controlled at the end of April.The correlation coefficient between the result simulated by the SEIR model and the actual situation was 0.96(P<0.05).Compared with the two later control start time(on the 15th and 20th days after Jan.23),the peak number of infected persons of the earliest control start time was reduced by 160.95%and 98.67%,respectively.Moreover,the peak number of the strongest control intensity(the susceptible persons exposed to 3 people)was 49.21%and 34.84%lower than that of the other two control intensity(the susceptible persons exposed to 10 or 7 people),respectively.Conclusions Based on the SEIR model,the COVID19 epidemic inflection point is predicted on the thirtyfifth day,which is in line with the actual situation,and the epidemic will be basically controlled at the end of April.The earlier the control and the stronger the control intensity,the more effective the intervention will be.Meanwhile,we should cut off the transmission routes as soon as possible.
作者 蔡洁 贾浩源 王珂 CAI Jie1];JIA Haoyuan;WANG Ke(Jiangyin People′s Hospital,Jiangyin 214400,China)
出处 《山东医药》 CAS 2020年第6期1-4,共4页 Shandong Medical Journal
基金 国家自然科学基金资助项目(81901606) 无锡市卫生计生科研面上项目(MS201642)
关键词 肺炎 新型冠状病毒肺炎 SEIR模型 管控强度 管控开始时间 pneumonia corona virus disease 2019 SEIR model control intensity control start time
  • 相关文献

参考文献2

二级参考文献9

  • 1STEVEN RILEY. Transmission Dynamics of the Etiological Agent of SARS in Hong Kong: Impact of Public Health Interventions [ EB \ OL ]. http:∥www. sciencexpress. org/23 May 2003/Page 1/10. 1126/science. 1086478, 2003,5.23.
  • 2MARC LIPSITCH. Transmission Dynamics and Control of Severe Acute Respiratory Syndrome[ EB\OL]. http:∥www. sciencexpress. org/23 May2003/Page 2/10. 1126/science. 1086925, 2003,5.23.
  • 3CHOWELL G. SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism[ J ]. Journal of Theoretical Biology, 2003,224( 1 ) :1 -8.
  • 4CLARKE F H, LEDYAEV YU S, STERN R J, et al. Nonsmooth Analysis and Control Theory[ M]. New York: Springer, 1998.
  • 5ZHANG Juan, MA Zhi - en. Global dynamics of an SEIR epidemic model with saturating contact rate[ J]. Mathematical Biosciences, 2003,185(1) :15 -32.
  • 6POLAK ELIJAH. Optimization Algorithms and Consistent Approximations[ M ]. New York: Springer, 1997.
  • 7王铎,赵晓飞.SARS疫情的实证分析和预测[J].北京大学学报(医学版),2003,35(B05):72-74. 被引量:18
  • 8SHI Yaolin Computational Geodynamics Laboratory of Graduate School of Chinese Academy of Sciences, Beijing 100039, China (e-mail: shiyl@gscas.ac.cn).Stochastic dynamic model of SARS spreading[J].Chinese Science Bulletin,2003,48(13):1287-1292. 被引量:10
  • 9李铮,陈曦,滕虎,修志龙,孙丽华,冯恩民.SARS流行病传染动力学研究[J].生物化学与生物物理进展,2004,31(2):167-171. 被引量:9

共引文献2558

同被引文献188

引证文献26

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部