期刊文献+

环R+vR上的斜常循环码 被引量:2

Skew constacyclic codes over rings R+vR
下载PDF
导出
摘要 本文主要研究了环ℜ=R+vR(v2=1)上斜常循环码,其中R是有限链环。利用环ℜ的直和分解,我们证明了环ℜ上长度为n的线性码C是斜常循环码的充分必要条件:C1是环ℜ上长度为n的斜循环码,且C2是环ℜ上长度为n的斜负循环码。同时,本文也讨论了斜常循环码的对偶码的生成多项式。 In this paper,we mainly discuss the constacyclic codes on ringsℜ=R+vR(v2=1),where R is a finite chain ring.Through the direct sum decomposition of the ringℜ,it is proved that a linear code C of length n over the ringℜis the skew constatcyclic code if and only if C1 is skew cyclic codes,and C2 is skew negative cyclic codes over the ring.Furthermore,the generating polynomial of their dual codes is discussed.
作者 王艳萍 林勇 WANG Yanping;LIN Yong(Faculty of Mathematics and Statistics,Suzhou University,Suzhou Anhui 234000,China)
出处 《阜阳师范学院学报(自然科学版)》 2020年第1期21-24,共4页 Journal of Fuyang Normal University(Natural Science)
基金 安徽省自然科学研究重点项目(KJ2019A0666) 安徽省专业建设项目(2012zy146) 宿州学院重点科研项目(2016yzd06,2017yzd16) 宿州学院教学研究项目(2017jy01) 宿州学院横向项目(2019xhx031)资助。
关键词 斜常循环码 对偶码 生成多项式 skew constacyclic codes dual codes generator polynomial
  • 相关文献

参考文献8

二级参考文献43

  • 1Bonneeaze A,Udaya P. Cyclic codes and self-dual codes over F2q-uF2[J]. IEEE Trans Inform Theory, 1999, 45 (4) 1250--1255.
  • 2Zhu Shixin, Wang Yu, Shi Minjia. Some results on cyclic codes over F2 +vF2 [J]]. IEEE Trans Inform Theory, 2010, 56 (4) : 1680-- 1684.
  • 3Hammons A R, Kumar P V. The Z4-1inearity of Kerdock, Preparata, Goethals, and related codes [J]. IEEE Trans Inform Theory, 1994,40(2) : 301-- 319.
  • 4Aydin N, Ray-Chaudhuri D K. Quasi-cyclic codes over Z4 and some new binary codes[J]. IEEE Trans Inform Theo- ry,2002,48(7) :2065--2069.
  • 5Boucher D,Geiselmann W, Ulmer F. Skew cyclic codes[J]. Applied Algebra in Engineering, Communication and Computing, 2007,18(4) : 379--389.
  • 6Boucher D, Ulmer F. Coding with skew polynomial rings [J]. Journal of Symbolic Computation, 2009, 44 ( 12 ): 1664--1656.
  • 7Ahualruh T,Ghrayeh A, Siap I, et al. On the construction of skew quasi-cyclic codes[J]. IEEE Trans Inform Theory, 2010,56(5):2081--2090.
  • 8Boucher D, Sole P, Ulmer F. Skew constacyclic codes over Galois rings[J]. Advances in Mathematics of Communication, 2008,2 (3) : 273-- 292.
  • 9MacWilliams F J, Sloan N J A. The theory of error-correc- ting codes [ M ]. Amsterdam: North Hoalland, 1977:189-196.
  • 10Wan Zhexian. Quaternary codes[M]. Singapore: World Sci- entific, 1997 : 93- 104.

共引文献23

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部