期刊文献+

反馈对儿童早期数学学习效果的影响元分析 被引量:2

Effects of Feedback on Young Children’s Mathematics Learning Outcomes: A Meta-Analysis
下载PDF
导出
摘要 反馈被认为是促进学生学习的最有力方式,信息技术的发展为反馈设计提供了支持.采用元分析方法考察反馈对儿童早期数学学习的影响,研究发现:反馈对儿童早期数学学习有较小的积极效果.通过调节分析发现,任务类型和反馈类型对反馈效果具有调节作用,反馈媒介、反馈时机和反馈效果测量时间对反馈效果无调节作用.未来关于反馈对儿童早期数学学习效果影响的研究,应在教育信息化背景下从任务特征、学习者特点和反馈特征3个方面综合考虑,提高反馈的针对性和个性化. Feedback was viewed as one of the most powerful means to increase student learning. Meanwhile the development of information technology provided support for feedback design. Given the current state of research, there was a need for a meta-analysis focusing on specific aspects of young children. The present meta-analysis was conducted on the effects of feedback on young children’s mathematics learning. A small but significant additional benefit of feedback was found for mathematics learning whose overall effect size was 0.236 based on data from 2 531 children in 10 studies. Moderator analyses were performed using a random effects model to contrast sub-samples based on different categorical study variables. It was found that the task type of Mathematics and feedback type were significant moderator of the effect sizes. However, the effects of feedback on mathematics learning with different feedback media, feedback time and feedback effect retention time were more consistent. In the future, the study of the effect of feedback on young children’s mathematical learning should be taken into consideration in three aspects: task characteristics, learners’ characteristics and feedback characteristics in the context of educational information, so as to improve the pertinence and individualization of the feedback.
作者 吕雪 郭力平 李姗姗 LV Xue;GUO Li-ping;LI Shan-shan(Department of Preschool Education,Faculty of Education,East China Normal University,Shanghai 200062,China;Center of Assessment towards Basic Education Quality,East China Normal University,Shanghai 200062,China)
出处 《数学教育学报》 CSSCI 北大核心 2020年第1期86-92,共7页 Journal of Mathematics Education
基金 教育部人文社会科学研究规划基金项目——物联网背景下儿童在游戏中学习的评价研究(17YJAZH026) “中国基础教育质量监测协同创新中心华东师范大学分中心”资助
关键词 反馈 数学学习 元分析 儿童 信息技术 feedback mathematics learning meta-analysis young children information technology
  • 相关文献

参考文献1

二级参考文献23

  • 1冯廷勇,李宇,李红,苏缇,龙长权.3~5岁儿童表面与结构相似性类比推理的实验研究[J].心理科学,2006,29(5):1091-1095. 被引量:11
  • 2Andrews, G. ,& Halford,G. S. (2002). A cognitive complexity metric applied to cognitive development. Cognitive Psychology, 45 (2), 153 - 219.
  • 3Chen, Z., Sanchez, R., & Campbell, T. (1997). From beyond to within their graps: Analogical problem solving in 10 - and 13 - month - olds. Developmental psychology, 33 ( 5 ), 790 - 801.
  • 4Gentner, D. (1977). If a tree had a knee, where would it be? Children' s performance on simple spatial metaphors. Papers and Reports on Child Language Development , 43 (3), 157 - 167.
  • 5Gentner, D. (1988). Analogical inference and analogical access. In A. Prieditis ( Ed. ) , Analogica, Losahos, CA : Morgan Kaufmann, 63 - 88.
  • 6Gentner, D., Holyoak, K. J., & Kokinov, B. N. (2001). The analogical mind: perspectives from cognitive science. Cambridge, MA: The MIT Prees, 437 -470.
  • 7Gentner, D. , & Rattermann, M. J. (1991). Language and the career of similarity. In S. A. Gelman, J. P. Bymes ( Eds. ) , Perspectives on though; and language: Interrelations in development. London : Cambridge University Press, 225 - 277.
  • 8Goswami, U. (1992). Analogical reasoning in children. Hillsdale, NJ: Lawrence Erlbaum, The analogical mind: Perspectives from cognitive science. Cambridge, MA: MIT Press, 510 -523.
  • 9Goswami, U. (2001). Analogical reasoning in children. Gentner, K. J., Holyoak, .B. N., Kokinov (Eds.). The analogical mind: Perspectives from cognitive science. Cambridge, MA : MIT Press, 437- 470.
  • 10Halford, G. S. (1993). Children's understanding: The development of mental models. Hillsdale, N J: Lawrence Erlbaum,3-17.

共引文献13

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部