期刊文献+

任意高差的多档输电线动刚度理论建模 被引量:1

Theoretical modeling of dynamic stiffness for multi-span transmission line with arbitrary height difference
下载PDF
导出
摘要 针对目前多档输电线动力特性研究中存在的不足,将任意一档导线视为子结构并基于现有的索振动理论获得了其动张力;利用相邻两档导线的动张力建立了悬垂绝缘子串绕其悬挂点摆动的动力学方程;综合每一档导线的振动方程以及悬垂绝缘子串的摆动方程建立了两档及三档输电线的动力学方程,求解得到由端部位移激励产生的动刚度;通过对动刚度进行分析得到了多档输电线的固有频率以及模态的理论表达形式;建立了小高差的两档及三档导线的有限元模型,理论分析结果与有限元结果一致,验证了理论公式的正确性。本文提出的动刚度理论对于研究多档输电线的动态响应具有重要的应用价值。 Aimed at deficiencies in the current researches of the dynamic characteristics of multi-span transmission line,the kinetic equations of a two-span and a three-span transmission lines,which consist of the vibration equation of each span and swing equation of insulator string,are established.Firstly,a span is regarded as a substructure and its dynamic tension is obtained based on the existing cable vibration theory.Using the dynamic tensions of two adjacent spans,the dynamic equation of the suspension insulator string around its suspension point is obtained.The dynamic stiffness generated by the end displacement excitation is determined.The natural frequency and the theoretical modal expression of the multi-span transmission lines are obtained by analyzing the dynamic stiffness.The finite element model of the two-span and three-span transmission lines with small height difference is established.The theoretical analysis results are consistent with the finite element results,and the correctness of the theoretical formula is verified.The dynamic stiffness theory proposed in this paper has important application value for studying the dynamic response of multi-span transmission line.
作者 刘小会 胡友 张路飞 蔡萌琦 严波 Liu Xiaohui;Hu You;Zhang Lufei;Cai Mengqi;Yan Bo(College of Civil Engineering,Chongqing Jiaotong University,400074,Chongqing,China;College of Architecture and Civil Engineering,Chengdu University,610106,Chengdu,China;College of Aeronautics and Astronautics,Chongqing University,400044,Chongqing,China)
出处 《应用力学学报》 CAS CSCD 北大核心 2020年第1期272-279,I0019,共9页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(51308570 51277186 51507106 51808085) 重庆市科委基础与前沿项目(cstc2017jcyjAX0246) 重庆市教委科学技术研究项目(KJ1400302) 博士点联合基金(20125522120003) 重庆交通大学研究生教育创新基金项目(2018S0118)
关键词 动刚度 连续档 高差 模态 频率 dynamic stiffness serials of spans height difference mode natural frequency
  • 相关文献

参考文献6

二级参考文献48

  • 1王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1):44-52. 被引量:209
  • 2Den Hartog J P. Transmission line vibration due to sleet. Trans [J]. AIEE 51, 1932, part 4: 1074- 1086.
  • 3Nigol O, Buchan P G. Conductor gallop 2: torsional mechanism [J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(2): 708-720.
  • 4Yu P, Shah A H, Popplewell N. Inertially coupled galloping of iced conductors [J]. Journal of Applied Mechanics-Transactions of the ASME, 1992, 59(1): 140- 145.
  • 5Wang Jianwei, Lilien Jean-Louis. Overhead electrical transmission line galloping: a full multi-span 3-dof model, some applications and design recommendations [J]. IEEE Transactions on Power Delivery, 1998, 13(3): 909-916.
  • 6Yu P, Desai Y M, Popplewell N. Three-degree-offreedom model for galloping (Parts I and II) [J]. Journal of Engineering Mechanics, 1993, 119: 2405- 2448.
  • 7Desai Y M, Yu P, Popplewell N. Geometric nonlinear static analysis of cable supported structures [J]. International Journal of Computers and Structures, 1988, 29(6): 1001 - 1009.
  • 8Desai Y M, Yu P, Popplewell N. Finite-element modeling of transmission-line galloping [J]. Computers & Structures, 1995, 57(3): 407-420.
  • 9Chadha J, Jaster W. Influence of turbulence on the galloping instability of iced conductors [J]. IEEE Transactions on Power Apparatus and Systems, 1975, 94(5): 1489- 1499.
  • 10Veletsos A S, Darbre G R. Dynamic stiffness of parabolic cables [J]. Earthquake Engineering and Structural Dynamics, 1983, 11: 367-401.

共引文献43

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部