期刊文献+

Volatility Estimation of Multivariate ARMA-GARCH Model

Volatility Estimation of Multivariate ARMA-GARCH Model
下载PDF
导出
摘要 GARCH models play an extremely important role in financial time series.However,the parameter estimation of the multivariate GARCH model is challenging because the parameter number is square of the dimension of the model.In this paper,the model of structural vector autoregressive moving⁃average(ARMA)with GARCH is discussed and an efficient multivariate impulse response estimation method is proposed.First,the causal structure of the model was identified and the independent component of error term vector was estimated by DirectLiNGAM algorithm.Then,the relationship between conditional heteroscedasticity of the independent component of error term vector and that of residual vector was constructed,and the estimation of the impulse response of conditional volatility of multivariate GARCH models was translated to the estimation of the impulse response of error term vector.The independency among the independent components was translated to the impulse response estimation of the univariate case and the causal structure was maintained.Finally,the proposed estimation method was used to estimate the volatility of stock market,which proved that the method is computational efficient. GARCH models play an extremely important role in financial time series. However, the parameter estimation of the multivariate GARCH model is challenging because the parameter number is square of the dimension of the model. In this paper, the model of structural vector autoregressive moving-average(ARMA) with GARCH is discussed and an efficient multivariate impulse response estimation method is proposed. First, the causal structure of the model was identified and the independent component of error term vector was estimated by DirectLiNGAM algorithm. Then, the relationship between conditional heteroscedasticity of the independent component of error term vector and that of residual vector was constructed, and the estimation of the impulse response of conditional volatility of multivariate GARCH models was translated to the estimation of the impulse response of error term vector. The independency among the independent components was translated to the impulse response estimation of the univariate case and the causal structure was maintained. Finally, the proposed estimation method was used to estimate the volatility of stock market, which proved that the method is computational efficient.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第1期36-43,共8页 哈尔滨工业大学学报(英文版)
基金 Sponsored by the National Natural Science Foundation of China(Grant No.61573014)
关键词 structural autoregressive moving⁃average multivariate GARCH independent component causal structure VOLATILITY structural autoregressive moving-average multivariate GARCH independent component causal structure volatility
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部