摘要
图像分割是计算机视觉领域的一个基础问题,涉及图像检索、物体检测、物体识别、行人跟踪等众多后续任务。目前已有大量研究成果,有基于阈值、聚类、区域生长的传统方法,也有基于神经网络的流行算法。由于图像区域边界的不确定性问题,现有算法并没有很好地解决图像部分区域渐变导致的边界模糊问题。粒计算是解决复杂问题的有效工具之一,在不确定的、模糊的问题上取得了良好的效果。针对现有图像分割算法在不确定性问题上的局限性,基于粒计算思想,提出了一种粗糙不确定性的图像分割方法。该算法在K均值算法的基础上,结合邻域粗糙集模型,先对类别边界区域的像素点进行粒化,运用邻域关系矩阵,得到各类别对各粒化像素点的包含度,从而对边界区域类别模糊的像素点进行重新划分,优化了图像分割的结果。在Matlab2019编程环境中,实验选取了BSDS500数据集中的一张马术训练图片和一张建筑物图片来测试算法性能。实验先对彩色图像进行灰度处理,用K均值算法对图像进行初步分割,再设置邻域因子值,依据边界像素点邻域信息重新划分边界点。对比K均值算法的分割结果可知,所提算法取得了更佳的效果。实验结果表明,该方法在粗糙度这一评价标准上优于K均值算法,可以有效降低图像区域边界的模糊性,实现灰度边界模糊的图像渐变区域的分割。
Image segmentation is a fundamental problem in the field of computer vision,involving image retrieval,object detection,object recognition,pedestrian tracking and many other follow-up tasks.At present,there are a lot of research results,including traditional methods based on threshold,clustering and region growing,and popular algorithms based on neural networks.Due to the boundary uncertainty of the image region,the existing algorithms are not suitable for solving the problem of partial gradation of the image.Granular computing is one of the effective tools for solving complex problems,and has achieved good results on uncertain and fuzzy problems.Aiming at the limitation of the existing image segmentation algorithms in the uncertainty problem,based on the idea of granular computing,a rough uncertain image segmentation method was proposed in this paper.Based on the K-means algorithm and the neighborhood rough set model,this algorithm granulates the pixel points at the edge of the cluster,and uses the neighborhood matrix to calculate the inclusion degree of the clusters for the granulated pixels.Finally,the optimization of class clustering of edge pixels is realized.In the Matlab2019 programming environment,the experiment selected an equestrian training picture and a picture of a building in the BSDS500 data set to test the algorithm.Firstly,the color image is processed by grading,and the K-means algorithm is used to segment the image.Then,the value of the neighborhood factor is set,and the edge point is re-divided according to the neighborhood information of the edge pixel.Compared with the K-means algorithm,this algorithm can achieve better results.The experimental results show that the proposed method outperforms the K-means algorithm in the evaluation of roughness,which can effectively reduce the blurring of the image region boundary and realize the segmentation of the image gradient region with gray boundary blur.
作者
饶梦
苗夺谦
罗晟
RAO Meng;MIAO Duo-qian;LUO Sheng(Department of Electronics and Information Engineering,Tongji University,Shanghai 201804,China;Key Lab of Embedded System and Service Computing(Tongji University),Ministry of Education,Shanghai 201804,China)
出处
《计算机科学》
CSCD
北大核心
2020年第2期72-75,共4页
Computer Science
基金
国家重点研发计划项目(213)
国家自然科学基金(61673301,61563016)
公安部重大专项(20170004)~~
关键词
图像分割
边界模糊
邻域粗糙集
K均值
粒计算
Image segmentation
Boundary blur
Neighborhood rough set
K-means
Granular computing