期刊文献+

Monte Carlo simulation of lattice analysis of complex LaCeTh0.1CuOy using ion bombardment technique

Monte Carlo simulation of lattice analysis of complex LaCeTh0.1CuOy using ion bombardment technique
下载PDF
导出
摘要 Ion bombardment analysis of perovskite materials is challenging owing to their peculiar structure.This shortcoming renders the reliability on the technique somewhat questionable.In this research,three structured modifications(i.e.,scan angle,low energy,and large ion bombardment)were adopted to improve the ion bombardment analysis of 99,999 ions using Monte Carlo simulations.The modified technique was used to analyze the effects of a chemically pressurized‘‘A’’site in the perovskite lattice system.The LaCeTh0.1Cu2Oy compound was used in this experiment.Despite the low probing energy,it was observed that the high number of ions bombarding the material resulted in external pressure on the lattice structure of the material.Moreover,the chemically pressurized‘‘A’’site perovskite material was characterized by lattice mismatch,lattice fluctuations,grain boundary collapse,and oxygen displacement.The novel discovery of this research is the inter-and intra-extended lattice mismatches that are likely to connect.Hence,further investigation of the connection between inter-and intraextended lattice mismatches is recommended as they may enable fabrication of room-temperature superconductors. Ion bombardment analysis of perovskite materials is challenging owing to their peculiar structure. This shortcoming renders the reliability on the technique somewhat questionable. In this research, three structured modifications(i.e., scan angle, low energy, and large ion bombardment) were adopted to improve the ion bombardment analysis of 99,999 ions using Monte Carlo simulations. The modified technique was used to analyze the effects of a chemically pressurized ‘‘A’’ site in the perovskite lattice system. The LaCeTh0.1Cu2Oycompound was used in this experiment. Despite the low probing energy, it was observed that the high number of ions bombarding the material resulted in external pressure on the lattice structure of the material. Moreover, the chemically pressurized ‘‘A’’ site perovskite material was characterized by lattice mismatch, lattice fluctuations, grain boundary collapse, and oxygen displacement. The novel discovery of this research is the inter-and intra-extended lattice mismatches that are likely to connect. Hence, further investigation of the connection between inter-and intraextended lattice mismatches is recommended as they may enable fabrication of room-temperature superconductors.
作者 M.E.Emetere
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第3期20-34,共15页 核技术(英文)
基金 partial sponsorship of the Covenant University,Nigeria,and University of Johannesburg
关键词 Lattice mismatch Ion bombardment Chemical pressure Scan angle Lattice mismatch Ion bombardment Chemical pressure Scan angle
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部