期刊文献+

基于存储论的高速公路通行卡库存管理研究

Expressway Pass Card Inventory Management Based on Storage Theory
下载PDF
导出
摘要 为了提高高速公路通行卡的流转效率,提出了一种基于存储论的高速公路通行卡库存管理模型。利用高速公路复合通行卡CPC历史流转数据,基于自回归移动平均模型(Autoregressive Integrated Moving Average Model,ARIMA),对CPC卡需求量及流转量进行预测。该模型结合存储论的方法与思想,提出库存管理周期以及最大库存、预警值及最佳订购/调拨量等相关参数,实现了库存管理的动态调整。最后进行实例分析,得出基于存储论的库存管理模型对通行卡需求量与流转量的预测误差分别为7.4%和11.5%,表明该模型预测精度较高且能够根据通行卡流转情况动态调整各相关变量,减少了收费站库存成本,提高了通行卡使用效率以及高速公路服务水平。 In order to improve the circulation efficiency of expressway pass card,an expressway pass card inventory management model based on storage theory was proposed.Based on the historical data of expressway CPC card and Autoregressive Integrated Moving Average Model(ARIMA),the demand and circulation amounts of CPC card were predicted.Based on the method and thought of storage theory,the inventory management cycle,maximum inventory,early warning value,optimal order/transfer quantity and other relevant parameters were put forward in the model,and the dynamic adjustment of inventory management was realized.Finally,an example was analyzed to show that the prediction errors of demand and circulation amounts were 7.4%and 11.5%respectively.It indicates that the model has high prediction accuracy,can dynamically adjust the relevant variables according to the circulation of pass card,reduce the inventory cost of toll stations,and improve the efficiency of the use of the pass card and the service level of the expressway.
作者 于泉 姚宗含 Yu Quan;Yao Zong-han(Beijing Engineering Research Center of Urban Transport Operation Guarantee,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Traffic Engineering,Beijing University of Technology,Beijing 100124,China)
出处 《交通运输研究》 2019年第6期77-84,共8页 Transport Research
关键词 智能交通 高速公路CPC卡 库存管理 存储论 周期 intelligent transportation expressway CPC card inventory management storage theory cycle
  • 相关文献

参考文献9

二级参考文献48

  • 1梁栋,林柏梁.铁路空车调配的多阶段策略优化模型研究[J].铁道学报,2007,29(1):1-6. 被引量:12
  • 2宋少威.辽宁省高速公路联网收费系统研究[D].沈阳工业大学硕士学位论文,2009.3.
  • 3王涛.高速公路非接触式IC卡专题研究.中国交通信息产业,2006,(71):61-68.
  • 4Mangharam R, Weller D S, Rajkumar R, et al. GrooveNet:A Hybrid Simulator for Vehicle- to- Vehicle Networks[C]//Second International Workshop on Vehicle-to-Vehicle Com.munications. San Jose, USA: IEEE, 2006: 1-8.
  • 5Haklay M, Weber P. OpenStreetMap: User- GeneratedStreet Maps[J]. Pervasive Computing, IEEE, 2008, 7(4):12-18.
  • 6开放地理空间实验室. OGC与OGC标准[EB/OL]. (2014-05-11)[2014-11-28]. http://lab.osgeo.cn/7139.html.
  • 7Blanchette Jasmin, Summerfield Mark. C++ GUI Qt 4 编程[M]. 闫锋欣,曾泉人,张志强,等,译. 北京:电子工业出版社,2013.
  • 8Rankin C. The Software Testing Automation Framework[J].IBM Systems Journal, 2002, 41(1): 126-139.
  • 9Turnquist G L. Python Testing Cookbook[M]. Birmingham,UK: Packt Publishing, 2011.
  • 10Daraghmi Yousef-Awwad, Yi Chih-Wei, Chiang Tsun-Chieh. Negative binomial additive models for short-term traffic flow forecasting in urban areas [ J ]. IEEE Transactions on Intelli- gent Transportation Systems ,2015,15 ( 2 ) :784-793.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部