期刊文献+

矿用设备开停传感器自学习工作方法 被引量:1

Self-learning working method of start-stop sensor for mining equipment
下载PDF
导出
摘要 目前大部分矿用设备开停传感器检测阈值固定,需人工手动调整开、停状态判定门限,调整过程复杂、不智能。针对这一情况,提出了一种开停传感器自学习工作方法,方法基于现场实际检测的磁场强度,根据统计学原理进行自学习,获得设备开、停判断门限。实践表明,该方法与现有手动调整电位器或遥控器调整寄存器的方法相比,准确度、灵活性、智能化程序等有了大幅提高,更易于现场使用。 At present,the detection thresholds of most on-and off-sensors of most mining equipment are fixed,and the thresholds for on-and off^state determination need to be adjusted manually.The adjustment process is complicated and unintelligent.Aiming at this situation,a working method of start-stop sensor self^leaming was proposed.The method was based on the magnetic field intensity actually detected on the spot,and performs self-learning based on statistical principles to obtain the equipment start-stop threshold.Practice showed that,compared with the existing methods of manually adjusting the potentiometer or the remote controller to adjust the register,the method greatly improved accuracy,flexibility,intelligent programs,etc.,and was easier to use on site.
作者 徐丽平 赵亮 Xu Liping;Zhao Liang(Changzhou Liuguojun Higher Vocational Technical School,Changzhou 213000,China;Changzhou Haitu Electronic Technology Corporation Ltd.,Changzhou 213000,China)
出处 《煤炭与化工》 CAS 2019年第11期83-84,89,共3页 Coal and Chemical Industry
关键词 开停传感器 自学习 电磁感应 start-stop sensor self-learning electromagnetic induction
  • 相关文献

参考文献8

二级参考文献53

共引文献80

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部