期刊文献+

危化品堆垛双目测距中改进的SURF匹配算法研究 被引量:1

Research on improved SURF matching algorithm in binocular distance measurement for hazardous chemicals stacking
原文传递
导出
摘要 堆垛安全"5距"是保证危化品存储安全的重要因素,双目视觉测距是解决该问题的一个非常有前景的技术。本文针对危化品堆垛测距中双目立体匹配算法受货物特征点相似和光照影响的特点从而影响精度的关键问题,提出一种自适应邻域的改进SURF匹配算法,该算法对特征点进行位置约束,解决传统SURF算法容易受局部区域像素梯度方向影响的问题,大大提升了匹配效果。实验表明,该算法使得匹配准确率基本保持在98%,特征点数量相对较少时,准确率能达到100%。 The "5-distance" of stacking is an important factor to ensure the storage safety of hazardous chemicals. Binocular vision distance measurement method is a very promising technology to solve this problem. In this paper, in the view of features that binocular stereo matching algorithm is affected by similarity of goods features points and features of illumination influence in distance measurement of hazardous chemicals stacking, an improved SURF matching algorithm based on self-adaptive neighborhood is proposed, which constrains the location of feature points, solves the problem of traditional SURF algorithm is easily affected by pixel gradient directions in local areas, and greatly improves the matching effect. Experiments show this algorithm can maintain 98 % of matching accuracy rate and this rate can be 100 % when the number of feature points is relatively few.
作者 刘学君 袁碧贤 晏涌 魏宇晨 刘永旭 马泓超 LIU Xuejun;YUAN Bixian;YAN Yong;WEI Yuchen;LIU Yongxu;MA Hongchao(Information Engineering College,Beijing Institute of Petrochemical Technology,Beijing 102617,Beijing,China;Information Science Technology College,Beijing University of Chemical Technology,Beijing 100029,Beijing,China)
出处 《计算机与应用化学》 CAS 北大核心 2019年第4期345-349,共5页 Computers and Applied Chemistry
基金 国家重点研究开发项目(2016YFC0801500) 北京市教育委员会市属高校创新能力提升计划项目(2016014222000041)
关键词 危化品堆垛 5距测量 SURF匹配算法 自适应邻域 hazardous chemicals five-distance measurement SURF matching algorithm self-adaptive neighborhood
  • 相关文献

参考文献3

二级参考文献59

  • 1王磊,张钧萍,张晔.基于特征的SAR图像与光学图像自动配准[J].哈尔滨工业大学学报,2005,37(1):22-25. 被引量:15
  • 2冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配算法[J].自动化学报,2007,33(7):678-682. 被引量:33
  • 3Zitova B, Flusser J. Image registration methods: a survey. Image and Vision Computing, 2003, 21(11): 977-1000.
  • 4Wang Y F, Yu Q Z, Yu W X. An improved normalized cross correlation algorithm for SAR image registration. In: Proceedings of International Conference on Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE, 2012. 2086-2089.
  • 5Kern J P, Pattichis M S. Robust multispectral image registration using mutual-information models. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1494-1505.
  • 6Wang A, Clausi D A. ARRSI: automatic registration of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1483-1493.
  • 7Yang Y, Gao X. Remote sensing image registration via active contour model. International Journal of Electronics Communications, 2009, 63(4): 227-234.
  • 8Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Firmenichy D, Brown M, Susstrunk S. Multispectral interest points for RGB-NIR image registration. In: Proceedings of the 18th International Conference on Image Processing. Brussels: IEEE, 2011. 181-184.
  • 10Fan D K, Ye Y X, Pan L, Yan S J. A remote sensing adapted image registration method based on SIFT and phase congruency. In: Proceedings of International Conference on Image Analysis and Signal Processing. Hubei, China: IEEE, 2011. 326-331.

共引文献15

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部