摘要
堆垛安全"5距"是保证危化品存储安全的重要因素,双目视觉测距是解决该问题的一个非常有前景的技术。本文针对危化品堆垛测距中双目立体匹配算法受货物特征点相似和光照影响的特点从而影响精度的关键问题,提出一种自适应邻域的改进SURF匹配算法,该算法对特征点进行位置约束,解决传统SURF算法容易受局部区域像素梯度方向影响的问题,大大提升了匹配效果。实验表明,该算法使得匹配准确率基本保持在98%,特征点数量相对较少时,准确率能达到100%。
The "5-distance" of stacking is an important factor to ensure the storage safety of hazardous chemicals. Binocular vision distance measurement method is a very promising technology to solve this problem. In this paper, in the view of features that binocular stereo matching algorithm is affected by similarity of goods features points and features of illumination influence in distance measurement of hazardous chemicals stacking, an improved SURF matching algorithm based on self-adaptive neighborhood is proposed, which constrains the location of feature points, solves the problem of traditional SURF algorithm is easily affected by pixel gradient directions in local areas, and greatly improves the matching effect. Experiments show this algorithm can maintain 98 % of matching accuracy rate and this rate can be 100 % when the number of feature points is relatively few.
作者
刘学君
袁碧贤
晏涌
魏宇晨
刘永旭
马泓超
LIU Xuejun;YUAN Bixian;YAN Yong;WEI Yuchen;LIU Yongxu;MA Hongchao(Information Engineering College,Beijing Institute of Petrochemical Technology,Beijing 102617,Beijing,China;Information Science Technology College,Beijing University of Chemical Technology,Beijing 100029,Beijing,China)
出处
《计算机与应用化学》
CAS
北大核心
2019年第4期345-349,共5页
Computers and Applied Chemistry
基金
国家重点研究开发项目(2016YFC0801500)
北京市教育委员会市属高校创新能力提升计划项目(2016014222000041)
关键词
危化品堆垛
5距测量
SURF匹配算法
自适应邻域
hazardous chemicals
five-distance measurement
SURF matching algorithm
self-adaptive neighborhood