期刊文献+

An artificial immune and incremental learning inspired novel framework for performance pattern identification of complex electromechanical systems 被引量:1

An artificial immune and incremental learning inspired novel framework for performance pattern identification of complex electromechanical systems
原文传递
导出
摘要 Performance pattern identification is the key basis for fault detection and condition prediction,which plays a major role in ensuring safety and reliability in complex electromechanical systems(CESs).However,there are a few problems related to the automatic and adaptive updating of an identification model.Aiming to solve the problem of identification model updating,a novel framework for performance pattern identification of the CESs based on the artificial immune systems and incremental learning is proposed in this paper to classify real-time monitoring data into different performance patterns.First,an unsupervised clustering technique is used to construct an initial identification model.Second,the artificial immune and outlier detection algorithms are applied to identify abnormal data and determine the type of immune response.Third,incremental learning is employed to trace the dynamic changes of patterns,and operations such as pattern insertion,pattern removal,and pattern revision are designed to realize automatic and adaptive updates of an identification model.The effectiveness of the proposed framework is demonstrated through experiments with the benchmark and actual pattern identification applications.As an unsupervised and self-adapting approach,the proposed framework inherits the preponderances of the conventional methods but overcomes some of their drawbacks because the retraining process is not required in perceiving the pattern changes.Therefore,this method can be flexibly and efficiently used for performance pattern identification of the CESs.Moreover,the proposed method provides a foundation for fault detection and condition prediction,and can be used in other engineering applications. Performance pattern identification is the key basis for fault detection and condition prediction, which plays a major role in ensuring safety and reliability in complex electromechanical systems(CESs). However, there are a few problems related to the automatic and adaptive updating of an identification model. Aiming to solve the problem of identification model updating, a novel framework for performance pattern identification of the CESs based on the artificial immune systems and incremental learning is proposed in this paper to classify real-time monitoring data into different performance patterns. First, an unsupervised clustering technique is used to construct an initial identification model. Second, the artificial immune and outlier detection algorithms are applied to identify abnormal data and determine the type of immune response. Third, incremental learning is employed to trace the dynamic changes of patterns, and operations such as pattern insertion, pattern removal, and pattern revision are designed to realize automatic and adaptive updates of an identification model. The effectiveness of the proposed framework is demonstrated through experiments with the benchmark and actual pattern identification applications. As an unsupervised and self-adapting approach, the proposed framework inherits the preponderances of the conventional methods but overcomes some of their drawbacks because the retraining process is not required in perceiving the pattern changes. Therefore, this method can be flexibly and efficiently used for performance pattern identification of the CESs. Moreover, the proposed method provides a foundation for fault detection and condition prediction, and can be used in other engineering applications.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第1期1-13,共13页 中国科学(技术科学英文版)
基金 supported in part by the National Key R&D Program of China(Grant No.2017YFF0210500) in part by China Postdoctoral Science Foundation(Grant No.2017M620446)
关键词 performance pattern identification complex electromechanical systems artificial immune incremental learning data classification performance pattern identification complex electromechanical systems artificial immune incremental learning data classification
  • 相关文献

参考文献2

二级参考文献4

共引文献8

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部