摘要
【目的】分析大数据智能计算的研究背景和面临的主要挑战问题,从认知计算的角度介绍一种大数据智能计算的新模型——多粒度认知计算。【方法】阐述大数据智能计算是实现大数据价值的必由之路,分析传统大数据智能计算模型所采用的数据计算机制,分析其与人类大脑认知机制不一致的问题。介绍统一满足人类大脑“大范围优先”认知机制(由粗粒度到细粒度)与计算机系统信息计算处理机制(由细粒度到粗粒度)的大数据智能计算研究新模型——多粒度认知计算,并介绍数据驱动的粒认知计算DGCC计算框架。【结果】发现建立数据驱动的粒认知计算模型,实现数据与知识双向驱动和变换,需要研究多粒度空间的描述问题、多粒度联合求解问题、人机认知机制融合等三个科学问题。【结论】通过在流程工业智能制造上进行的初步探索表明,多粒度认知计算是解决大数据智能决策面临“数据-知识”融合难题的一种有效的新模型。
[Objective]This paper analyzes the research background of big data intelligent computing and associated challenging problems,then introduces multi-granularity cognitive computing,a novel model for big data intelligent computing in the view of cognitive computing.[Methods]Big data intelligent computing is shown to be a way to utilize the value of big data.The data computing mechanism of most traditional big data intelligent computing models is found inconsistent with the cognition mechanism of human brain.This paper introduces the multi-granularity cognitive computing model,which is a model for big data intelligent computing and unifies the“global precedence”law of human brain’s cognition mechanism(from coarse granularity to fine granularity)and the information processing mechanism in computer systems(from fine granularity to coarse granularity).The framework of data-driven granular cognitive computing(DGCC)is introduced.Furthermore,some application examples in intelligent manufacturing process industry are introduced.[Results]It is found that three kinds of scientific problems need to be studied for establishing the data-driven granular cognitive computing model and the integration of knowledge driven and data driven computing mechanisms.Those are multi-granularity space description,multi-granularity joint problem solving and human-computer cognitive mechanism integration.[Conclusion]Through its preliminary exploration on intelligent manufacturing in process industry,it is shown that multi-granularity cognitive computing is an effective new model to solve the problem of data-knowledge fusion in intelligent decision-making based on big data.
作者
王国胤
于洪
Wang Guoyin;Yu Hong(Chongqing Key Laboratory of Computational Intelligence,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处
《数据与计算发展前沿》
2019年第2期75-85,共11页
Frontiers of Data & Computing
关键词
大数据智能
认知计算
粒计算
数据挖掘
big data intelligence
cognitive computing
granular computing
data mining