期刊文献+

智媒时代“信息茧房”再论:概念界定和效应探讨 被引量:15

Further Discussion on “Information Cocoons” in the Era of Intelligent Media: Concept Definition and Effect Discussion
下载PDF
导出
摘要 随着媒介技术的不断发展,个性化推荐技术在智媒时代得以广泛运用,这在很大程度上加剧了人们对"信息茧房"的担忧。文章重新定义了"信息茧房"的概念,将其主要区分为因自我选择和算法推荐所产生的不同类型,并探究了不同类型的"信息茧房"效应存在与否的理论依据及实证依据。结果发现尽管在自我选择和算法推荐与信息窄化和观点极化之间存在较强的理论关联,但这些关联尚未得到足够的实证研究支持。尽管如此,文章认为对于"信息茧房"效应的担忧和反思仍然是必要的。 With the development of media technology,personalized recommendation technology has been widely used in the era of intelligent media,which to a large extent aggravates people ’ s concern about " information cocoons".This paper redefines the concept of " information cocoons",divides it into different types due to self selection and algorithm recommendation,and explores the theoretical basis and empirical basis for the existence of the effects of " information cocoons". The findings show that although there are strong relation between self selection and algorithm recommendation,and between information narrowing and opinion polarization,these correlations have not been supported by sufficient empirical research. Nevertheless,it is still necessary to worry about and reflect on the effect of " information cocoons".
作者 李武 艾鹏亚 杨韫卿 Li Wu;AI Pengya;Yang Yunqing
出处 《未来传播》 2019年第6期7-13,110,共8页 Future Communication
  • 相关文献

参考文献8

二级参考文献135

  • 1张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 2Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 4梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 5Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 7Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 8Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 9Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 10Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217

同被引文献91

引证文献15

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部