期刊文献+

基于耳蜗谱图纹理特征的声音事件识别 被引量:6

Sound event recognition based on texture features of cochleagram
下载PDF
导出
摘要 针对在各种环境下声音事件的识别问题,提出了一种基于谱图纹理特征的声音事件识别方法。首先,将声音信号通过伽马通(Gammatone)滤波器组,使原始声音样本转化为灰度耳蜗谱图;然后,对谱图进行曲波(Curvelet)变换,得到不同尺度、不同方向的Curvelet子带;再采用改进完全局部二值模式(Improved Completed Local Binary Pattern,ICLBP)提取Curvelet子带的纹理特征,并生成分块统计直方图,将统计直方图级联作为一种新的声音事件特征;最后,使用支持向量机作为分类器对16种声音事件在不同噪声和不同信噪比下进行识别。实验结果表明,所提特征与其他声音特征相比,可以有效识别各种噪声环境下不同种类的声音事件。 A sound event recognition method based on texture features of cochleagram is proposed for improving sound event recognition in various environments.Firstly,the original sound sample is converted into a grayscale cochleagram by Gammatone filter bank.Then,the cochleagram is processed by Curvelet transform to obtain Curvelet sub-bands with different scales and directions.The texture features of Curvelet sub-bands are extracted by using the improved completed local binary pattern(ICLBP)to generate the block statistical histograms which are cascaded as a new sound event feature for recognition.Finally,the support vector machine is used as a classifier to identify 16 kinds of sound events under different noise environments and different signal-to-noise ratios.The experimental results show that the proposed algorithm can effectively identify different kinds of sound events in various noise environments compared with other sound features.
作者 曾金芳 黄费贞 白冰 徐林涛 ZENG Jinfang;HUANG Feizhen;BAI Bing;XU Lintao(School of Physics and Optoelectronic Engineering,Xiangtan University,Xiangtan 411105,Hunan,China)
出处 《声学技术》 CSCD 北大核心 2020年第1期69-75,共7页 Technical Acoustics
基金 湖南省自然科学基金项目(2018JJ3486) 湘潭大学校级科研项目(16XZX02) 湘潭大学博士启动项目(15QDZ28)。
关键词 Gammatone滤波器组 耳蜗谱图 CURVELET变换 完全局部二值模式 支持向量机 Gammatone filter bank cochleagram Curvelet transform completed local binary pattern support vector machine
  • 相关文献

参考文献3

二级参考文献33

  • 1Klapuri.Audio signal classification[R].ISMIR Graduate School, 2004.
  • 2Gerhard D.Audio signal classification: history and cur- rent techniques[R].Department of Computer Science, University of Regina, Regina, Canada, 2007-11.
  • 3Shin W H, Lee B-S, Lee Y-K, et al.Speech/non-speech classification using multiple feature for robust endpoint[C]// IEEE International Conference on Detection, Acoustics, Speech, and Signal Processing (ICASSP2000) , 2000, 3: 1399-1402.
  • 4Cowling M, Sitte R.Analysis of speech recognition tech- niques for use in a non-speech sound recognition sys- tem[M]//Honray B,Wysocki T,Darnell M.Advanced Sig- nal Processing for Commtuaication Systems.[S.1.]: Kluwer Academic Publishers, 2004:131-46.
  • 5Cowling M.Non-speech environmental sound classifica- tion systems for autonomous surveillance[D].School of Information Technology, G~:iffith University, Gold Coast Campus, 2004.
  • 6Barry S J, Dane A D, Alya H, et al.The automatic rec- ognition and counting of cough[J].Cough,2006,2(8).
  • 7Kimber D, Wilcox L.Acoustic segmentation for audio browersers[C]//Proceedings of Interface Conf, Australia, 1996.
  • 8Rabiner L, Juang B H.Fundamentals of speech recogni- tion[M].[S.1.] :Prentice Hall, 1999.
  • 9Zhang T, Kuo C-C J.Audio content analysis for online audiovisual data segmentation and classification[J].IEEE Trans on Speech and Audio Processing,2001,9(4) :441-457.
  • 10Abu-EI-Quran A R, Goubran R A,Chan A D C.Securi- ty monitoring using microphone arrays and audio clas- sification[J].IEEE Trans on Instrumental and Measure- ments,2006,55 (8) : 1025-1032.

共引文献3

同被引文献66

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部