期刊文献+

室内惯性导航系统/相机拓扑测量的因子图合作定位算法 被引量:1

Inertial Navigation System/Topology Measurement Integrated Algorithm with Factor Graph for Indoor Cooperative Localization
下载PDF
导出
摘要 为解决合作定位算法中滤波结构不易扩展、鲁棒性差的问题,提出了一种适应于室内多用户的惯性导航系统/相机拓扑测量的因子图合作定位算法。利用目标检测识别算法,提出相机拓扑测量合作定位算法。通过构建拓扑测量、惯性导航系统因子函数,推导出基于因子图的可扩展参数优化模型。为进一步提高鲁棒性,引入综合考虑残差和检测分数的权值判断法,提出适应于相机拓扑测量的改进型开关约束算法。仿真和实测实验表明:拓扑测量观测精度的提升对位置和速度估计、算法收敛次数均有不同程度的改善;合作+改进型开关约束算法的定位精度较非合作+非鲁棒算法的提高了79.8%;改进型开关约束算法相比原开关约束算法具有较高的预测成功率,当测量遮挡时长比为0.4时,改进型开关约束算法将原开关约束算法对野值点的预测成功率由89.35%提高到了97.4%;与原开关约束算法相比,引入权值判断法的改进型开关约束算法剔除了同用户多边框的异常拓扑测量值,减小了计算开销,提高了合作定位精度和鲁棒性。 To address the deficiencies of standard filters and low robustness in cooperative localization system,a novel factor graph algorithm is proposed,which can be applied to indoor multiple users by fusing topology measurement provided by cameras with inertial navigation system.A topology measuring cooperative localization method is further presented utilizing the objects detection algorithm from the images.To derive a flexible optimization model of the navigation solution with incorporating asynchronous sensors capabilities,the topology measuring factors and inertial navigation system factors are created in solving nonlinear optimization problems.To further enhance the robustness,an improved switch constraint algorithm is developed by introducing weights decision approach considering both residuals and detection scores,and it better suits to the topology measurements.Simulations and experiments show that the rising accuracy of topology measurements improves position and velocity estimations and reduces iteration times of the navigation solutions.The positioning accuracy of non-cooperative+non-robust approach is 79.8% higher than that of cooperative+improved switching constraint approach.The improved switch constraint algorithm has a higher prediction success rate than that of the original switch constraint algorithm,and when the ratio of measuring occlusion duration is 0.4,the former improves the prediction success rate of the latter for outliers from89.35%to 97.4%.Compared with the switch constraint algorithm,the improved algorithm by introducing weights decision approach removes abnormal topology measurements of the same user with multiple detected rectangles,improves cooperative positioning accuracy and robustness time consumption in computation.
作者 张琳 廉保旺 ZHANG Lin;LIAN Baowang(School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第3期70-79,共10页 Journal of Xi'an Jiaotong University
基金 国家自然科学(61771393) 国家自然科学基金青年科学基金资助项目(61803310)
关键词 相机拓扑测量 惯性导航系统 因子图 合作定位 鲁棒性 topology measurement inertial navigation system factor graph cooperative localization robust
  • 相关文献

参考文献4

二级参考文献16

  • 1MAO Guoqiang, FIDAN B, ANDERSON B. Wireless sensor network localization techniques [J]. Computer Networks, 2007, 51(10): 2529-2553.
  • 2NATH S, EKAMBARAM V N, KUMAR A, et al. Theory and algorithms for hop-count-based localization with random geometric graph models of dense sensor networks [J]. ACM Transactions on Sensor Networks, 2012, 8(4): 111-152.
  • 3NICULESCU D, NATH B. DV based positioning in Ad Hoc networks [J]. Telecommunication Systems, 2003, 22(1): 267-280.
  • 4KUMAR S, LOBIYAL D. An advanced DV-hop localization algorithm for wireless sensor networks [J]. Wireless Personal Communications, 2012, 71(2): 1365-1385.
  • 5WANG Yun, WANG Xiaodong, WANG Demin, et al. Range-free localization using expected hop progress in wireless sensor networks [J]. IEEE Transactions on Parallel and Distributed System, 2009, 20(10): 1540-1552.
  • 6VURAL S, EKICI E. On multihop distances in wireless sensor networks with random node locations [J]. IEEE Transactions on Mobile Computing, 2010, 9(4): 540-552.
  • 7WEI Quanrui, HAN Jiuqiang, ZHONG Dexing, et al. An improved multihop distance estimation for DV-Hop localization algorithm in wireless sensor networks [C] ∥Proceedings of the IEEE 76th Vehicular Technology Conference. Piscataway, NJ, USA: IEEE, 2012: 1-5.
  • 8李善仓,傅鹏,张德运.无线传感器网络中的分布式节点定位方法[J].西安交通大学学报,2007,41(12):1418-1422. 被引量:19
  • 9孔庆茹,杨新宇,闫超,杨文静.一种基于接收信号强度指示的改进型定位算法[J].西安交通大学学报,2008,42(2):147-151. 被引量:9
  • 10周旭,李善仓,王新珩.大规模传感器网络局部半定规划的节点定位算法[J].西安交通大学学报,2009,43(8):38-42. 被引量:1

共引文献105

同被引文献23

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部