期刊文献+

时空大数据挖掘分析及可视化技术研究与系统设计 被引量:3

Technical research and system design of data mining analysis and visualization in spatiotemporal big data
下载PDF
导出
摘要 大数据正日益改变人类的工作、生活和思维方式,当今社会80%以上的数据都与时空相关。无论是政府主导的智慧城市建设、土地利用规划、应急管理,还是企业的网点选址、营销策划等行为,都离不开时空大数据的支撑。如何对时空大数据进行分析挖掘,并实现大数据的可视化表现成为社会普遍关心和重点研究的内容。文章分析了时空大数据分析挖掘及可视化的发展现状及存在问题,研究了主要关键技术,并对系统进行了总体设计。 Big data is increasingly changing the way of human work,life and thinking.More than 80% of the data in today’s society is related to time and space.No matter the smart city construction,land use planning,emergency management led by the government,or the site selection,marketing planning and other behaviors of enterprises,are inseparable from the support of time and space big data.How to analyze and mine the spatiotemporal big data,and how to realize the visualization of big data has become the focus of social research.This paper analyses the development status and problems of spatiotemporal data mining and visualization.And it studies the main key technologies,then designs the system.
作者 曹全龙 石善球 Cao Quanlong;Shi Shanqiu(Foundational Geography Information Center of Jiangsu,Nanjing 210013,China)
出处 《江苏科技信息》 2020年第3期45-47,共3页 Jiangsu Science and Technology Information
关键词 时空大数据 分析挖掘 数据可视化 系统设计 spatiotemporal big data analysis and mining data visualization system design
  • 相关文献

参考文献3

二级参考文献28

  • 1Fayyad U M, Piatetsky-Shapiro G, Smyth P. Knowledge discovery and data mining: towards a unifying framework [ C ]/! Proceedings of KDD-96 : International Conference on Knowledge Discovery and Data Mining. Portland, Oregon : AAAI Press, 1996:82-88.
  • 2Laxman S S, Sastry P S. A survey of temporal data mining [ J ]. Sadhana,2006,31 (2) :173-198.
  • 3Fu T C. A review on time series data mining[ J]. Engineering Applications of Artificial Intelligence,2011,24( 1 ) : 164-181.
  • 4Mennis J, Guo D. Spatial data mining and geographic knowledge discovery:an introduction [ J ]. Computers, Enviroment and Urban Systems,2009,33 ( 6 ) :403-408.
  • 5Tsoukatos I, Gunopulos D. Efficient mining of temporal-spatial patterns [ C ]//Proceedings of the 7th Symp on Advances in Spatial and Temporal Databases. Berlin Heidelberg : Springer ,2001:425-442.
  • 6Lee A J T, Chert Y A. Mining frequent trajectory patterns in temporal-spatial databases [ J]. Information Sciences,2009, 179(13) :2218-2231.
  • 7Li X, Han J, Lee J G,et al. Traffic density-based discovery of hot routes in road networks [ C ]//Proc of the 10th Int Conf on Advances in Spatial and Temporal Databases. Berlin Heidelberg: Springer,2007:441-459.
  • 8The Apache Software Foundation. Welcome to Apache Hadoop[ EB/OL]. [ 2013-08-10 ] http ://hadoop. apache, org.
  • 9Dean J, Ghemawat S. MapReduce : simplified data processing on large clusters [ J ]. Communications of the ACM, 2008,51 ( 1 ) : 107-113.
  • 10Aji A, Wang F S, Vo H, et al. Hadoop-GIS : a high performance spatial data warehousing system over mapReduce [ C ]//Tile Proceedings of the VLDB Endowment ,2013,6( 11 ) : 1009-1020.

共引文献106

同被引文献22

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部