期刊文献+

基于蒙特卡洛法的电动汽车无序充电对电网的影响分析 被引量:8

Analysis on the Impacts of Electric Vehicle Disorderly Charging on Power Grid Load Based on Monte Carlo Method
下载PDF
导出
摘要 在无序充电模式下,电动汽车大规模接入电网给电网运行安全带来了新的挑战。在研究影响电动汽车充电负荷因素的基础上,建立了无序充电的数学模型并利用蒙特卡洛法进行模型计算。在特定区域内,选取一定数量的电动汽车进行模型验证。结果表明,电动汽车无序状态下接入电网充电,不仅拉大了负荷峰谷差,而且加剧了负荷曲线波动,同时电网负荷峰谷差率也有所增加,电网电压偏差也有所变化,给电力系统调峰带来了压力。 In the disorderly charging mode,the large-scale access of electric vehicles to the power grid brings a new challenge to the operation Safety of the power grid,the mathematical model of the disorderly charging is established based on the factors affecting the charging load of the electric vehicles.The Monte Carlo method is applied to calculate the disorderly charging load.In a specified area,a certain number of electric vehicles are utilized to verify the model.The charging load and the grid regular load constitute the totality of loads for electric vehicles charging.The impacts of charging load to the grid are measured by the peak-valley ratio of the total loads.The simulation results show that the disorderly charging load make the peak-valley difference and peak-valley ratio increase,and the fluctuation of the load curve is aggravated,which make influence on peak load dispatching system.
作者 郑晶晶 闫志杰 李伟 王伟 彭飞云 董海鹰 ZHENG Jing-jing;YAN Zhi-jie;LI Wei;WANG Wei;PENG Fei-yun;DONG Hai-ying(State Grid Gansu comprehensive energy service Co.,Ltd.,Lanzhou 730070,china;College of automation and electrical engineering,Lanzhou Jiaotong University,Lanzhou 730070,china;College of new energy and power engineering,Lanzhou Jiaotong University,Lanzhou 730070,china)
出处 《电气传动自动化》 2019年第5期1-5,共5页 Electric Drive Automation
基金 国网甘肃综合能源服务有限公司资助
关键词 电动汽车 无序充电 蒙特卡洛法 电压偏差 electric vehicles disorderly charging Monte Carlo Method load calculation
  • 相关文献

参考文献13

二级参考文献159

  • 1Mehdi E A, Kent C, Jason S. et at. Rapid-charge electric-vehicle stations[J]. IEEE Transactions on Power Delivery, 2010, 25(3).. 1883-1887.
  • 2Energy Information Administration, US Department of Energy. Annual energy review[R]. Washington DC: US Department of Energy, 2010.
  • 3Saber A Y, Venayagamoorthy G K. One million plug-in electric vehicles on the road by 2015[C]//12th international IEEE Conference on Intelligent Transportation Systems ITSC'09. St. Louis, Missouri, USA.. IEEE Intelligent Transportation Systems Society, 2009: 1-7.
  • 4Clement N K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2010(25): 371-380.
  • 5Scotland W W F. The role of electric vehicles in Scotland's low carbon future[R]. Scotland." WWFScotland, 2010.
  • 6John V. Top 10 tech cars[R]. USA: The Institute of Electrical and Electronics Engineers, 2007.
  • 7Heydt G T. The impact of electric vehicle eployment on load management strategies[J]. IEEE Transactions on Power Appication System, 1983(144): 1253-1259.
  • 8Heider A, Haubrich H J. Impact ofwide-scale EV charging on the power supplynetwork[R]. Munich: Res.&Dev. Center, BMWAG, 1998, 6(262): 1-4.
  • 9Kristien C N, Edwin H, Johan D. The impact of charging plug-in hybrid electricvehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2010, 25(1): 371-380.
  • 10Hadley S W. Evaluating the impact of plug-in hybrid electric vehicles on regional electricity supplies[R]. SC, USA: Bulk Power System Dynamics and Control-VII Revitalizing Operational Reliability, 2007.

共引文献389

同被引文献63

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部