摘要
本文旨在利用社交媒体中的情感信息来提升股价涨跌预测性能.与以往粗粒度地使用文本中的情感信息不同,将与某公司特定话题相关的细粒度情感信息引入预测模型中,并提出一个用于短期股价预测的全新特征——“话题情感”,该特征同时抽取话题和情感信息,并协同利用二者来预测股价涨跌.此外,以往的测试数据集中交易日数量非常少或者仅包含单支股票的数据,本文方法构建了包含众多股票的长时间跨度数据集,并在此数据集上验证了细粒度情感分析对股价涨跌预测的良好效用.
To improve the capability of stock price movement prediction,the sentiment information in social media was utilized.Different from the coarse-grained utilization of all the sentiment information in text,the fine-grained sentiment information correlated with the specific topic of a company was taken into consideration in this study.The topic and its corresponding sentiment information were co-extracted and simultaneously used to predict the stock price movement.Moreover,to verify the efficiency of the fine-grained sentiment information,a stock dataset,consisting of more trading dates and stocks,was utilized.It is superior to previous research with only few trading dates or few stocks.
作者
季子峥
沈婷婷
张孝
JI Zi-zheng;SHEN Ting-ting;ZHANG Xiao(School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China)
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2020年第1期83-89,共7页
Transactions of Beijing Institute of Technology
关键词
股价涨跌预测
社交媒体
情感分析
stock price movement prediction
social media
sentiment analysis