期刊文献+

基于转移概率矩阵自学习的犯罪分布预测 被引量:3

Predicting Crime Distribution Based on Transition Probability Matrix Self-Learning Algorithm
下载PDF
导出
摘要 针对犯罪分布预测准确率低,历史犯罪数据缺失严重的问题,提出了基于历史犯罪数据,融合所研究地区的社会环境因素的转移概率矩阵自学习的犯罪分布预测算法——TWcS.将包括距离信息、面积信息、人口信息在内的社会环境因素作为权重值引入到梯度下降策略中,利用梯度下降实现TWcS算法的转移概率矩阵自学习.实验结果证明,TWcS算法的性能明显优于包括当前最优基线算法(TPML-WMA)在内的其他预测算法(如LR、AR、Lasso回归算法、贝叶斯算法、决策树算法等),TWcS算法的MAE值是其他算法MAE平均值的33%. Aiming at the problem of low accuracy of crime distribution prediction and serious lack of historical crime data,a crime distribution prediction algorithm,TWcS,was proposed based on a transition probability matrix model,the historical crime data and integrating social environmental factors in the studied area.In this paper,the social environment factors including distance information,area information and population information were introduced as weights into the gradient descent strategy,and the transition probability matrix self-learning of TWcS algorithm was realized by gradient descent.The experimental results show that the performance of TWcS algorithm is superior to other prediction algorithms including TPML-WMA,LR,AR,Lasso regression algorithm,Bayesian algorithm,decision tree algorithm,etc.The MAE value of TWcS algorithm is only 33%of the average MAE value of the other algorithms.
作者 魏新蕾 颜金尧 石拓 张园 WEI Xin-lei;YAN Jin-yao;SHI Tuo;ZHANG Yuan(School of Information Engineering,Communication University of China,Beijing 100024,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2020年第1期98-104,共7页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金面上项目(61971382) 中国传媒大学中央高校基本科研业务费专项资金资助
关键词 犯罪分布预测 转移概率矩阵 梯度下降法 crime distribution prediction transition probability matrix gradient descent
  • 相关文献

同被引文献122

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部