期刊文献+

多特征结合引导滤波的多聚焦图像融合 被引量:1

Multi-Focus Image Fusion based on Multiple Features Combined with Guided Filtering
下载PDF
导出
摘要 提出一种多特征结合引导滤波的图像融合算法,使用多个特征,计算各特征的置信图,将各特征的优势相结合,提升整体融合的质量。具体步骤如下:首先计算源图像的多类特征,各特征经过引导滤波后计算初始决策图和置信图,然后通过形态学方法去除小连通区域后,再次使用引导滤波得到最终决策图,最后使用置信图对最终决策图加权,与源图像相乘再相加得到最终的融合图像。实验结果表明,该算法对残差图的主观分析和客观融合质量评价指标的定量分析,较当前传统多聚焦图像融合算法均有提升。 An image fusion algorithm with multiple features combined with guided filtering is proposed,which uses multiple features,calculates the confidence map of each feature,combines the advantages of each feature,and improves the quality of the overall fusion.The specific steps of the algorithm are as follows:first,calculate multiple-type features of the source image,and the initial decision map and confidence map after each feature is guided and filtered;then after removing the small connected regions by morphological methods,the guided filtering is used again to obtain the final decision graph;finally,the confidence map is used to weight the final decision map,multiplied by the source image and then added to obtain the final fused image.The experimental results indicate that the subjective analysis of the residual image and the quantitative analysis of the objective fusion quality evaluation index are both improved as compared with the current traditional multi-focus image fusion algorithms.
作者 陈蔓 胥小波 CHEN Man;XU Xiao-bo(China Electronic Technology Cyber Security Co.,Ltd.,China Electronics Technology Group Corporation,Chengdu Sichuan 610000,China)
出处 《通信技术》 2020年第3期599-605,共7页 Communications Technology
基金 四川省重大科技专项课题“空间信息网络综合安全态势平台”(No.2018GZDZX0006)。
关键词 图像融合 多聚焦 引导滤波 多特征 image fusion multi-focus guided filtering multiple features
  • 相关文献

参考文献1

二级参考文献17

  • 1李小娟,赵巍.一种基于多尺度边缘的图像融合算法[J].北京航空航天大学学报,2007,33(2):229-232. 被引量:4
  • 2WANG Z, ZOU D,Armenakis C, et al. A comparative Analysis of Image Fusion Methods [ J ]. Geoscience and Remote Sensing, IEEE Transactions on, 2005, 43 (6) : 1391-1402.
  • 3Johnson J L, Padgett M L. PCNN Models and Applica- tions[ J ]. IEEE Transactions on Neural Networks/a pub- lication of the IEEE Neural Networks Council, 1998, 10 ( 3 ) : 480-498.
  • 4CHAI Y, LI H F, Qu J F. Image Fusion Scheme Using a Novel Dual-Channel PCNN in Lifting Stationary Wavelet- Domain [ J ]. Optics Communications, 2010, 283 ( 19 ) : 3591 -3602.
  • 5WANG Z, MA Y, GU J. Multi-Focus Image Fusion Using- PCNN [ J ]. Pattern Recognition, 2010, 43 (6) :2003-2016.
  • 6KONG WW, I,EI Y J, I.EI Y, et al. Image Fusion Tech- nique based on Non-Subsampled Contourlet Transform and Adaptive Unit-Fast-Linking Pulse-Coupled Neural Network [J]. Image Processing, IET, 2011,5(2) :113-121.
  • 7Donoho D L. Compressed Sensing [ J]. Infunnation Thc- ory, IEEE Transactions on, 2006, 52 (4) : 1289-1306.
  • 8Candes E J, Romberg J, TAO T. Robust Uncerlainty Principles: Exact Signal Reconstruction from Highly In- complete Frequency Information [ J ]. Information Theo- ry, IEEE Transactions on, 2006, 52(2) : 489-509.
  • 9Schmidt M, Fung G, Rosales R. Fast Optimization Meth- ods for 11 Regularization: A Comparativc Study and Two NewApproaches [ M ]//Machine Learning: ECML 2007. Springer Berlin Heidelberg, 2007:286-297.
  • 10WANG Z, MA Y. Medical Image Fusion Using m-PC- NN[J]. Information Fusion, 2008, 9(2) : 176-185.

同被引文献5

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部