期刊文献+

Town-scale microbial sewer community and H2S emissions response to common chemical and biological dosing treatments 被引量:2

Town-scale microbial sewer community and H2S emissions response to common chemical and biological dosing treatments
原文传递
导出
摘要 Controlling hydrogen sulfide(H2S)odors and emissions using a single,effective treatment across a town-scale sewer network is a challenge faced by many water utilities.Implementation of a sewer diversion provided the opportunity to compare the effectiveness of magnesium hydroxide(Mg(OH)2)and two biological dosing compounds(Bioproducts A and B),with different modes of action(MOA),in a field-test across a large sewer network.Mg(OH)2 increases sewer p H allowing suppression of H2S release into the sewer environment while Bioproduct A acts to disrupt microbial communication through quorum sensing(QS),reducing biofilm integrity.Bioproduct B reduces H2S odors by scouring the sewer of fats,oils and grease(FOGs),which provide adhesion points for the microbial biofilm.Results revealed that only Mg(OH)2 altered the microbial community structure and reduced H2S emissions in a live sewer system,whilst Bioproducts A and B did not reduce H2S emissions or have an observable effect on the composition of the microbial community at the dosed site.Study results recommend in situ testing of dosing treatments before implementation across an operational system. Controlling hydrogen sulfide(H2S) odors and emissions using a single,effective treatment across a town-scale sewer network is a challenge faced by many water utilities.Implementation of a sewer diversion provided the opportunity to compare the effectiveness of magnesium hydroxide(Mg(OH)2) and two biological dosing compounds(Bioproducts A and B),with different modes of action(MOA),in a field-test across a large sewer network.Mg(OH)2 increases sewer p H allowing suppression of H2S release into the sewer environment while Bioproduct A acts to disrupt microbial communication through quorum sensing(QS),reducing biofilm integrity.Bioproduct B reduces H2S odors by scouring the sewer of fats,oils and grease(FOGs),which provide adhesion points for the microbial biofilm.Results revealed that only Mg(OH)2 altered the microbial community structure and reduced H2S emissions in a live sewer system,whilst Bioproducts A and B did not reduce H2S emissions or have an observable effect on the composition of the microbial community at the dosed site.Study results recommend in situ testing of dosing treatments before implementation across an operational system.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第1期133-148,共16页 环境科学学报(英文版)
基金 supported by an Australian Postgraduate Award at La Trobe University additional financial support from industry collaborators Western Water
关键词 Microbially induced concrete corrosion Biological dosing treatments Magnesium hydroxide Hydrogen sulfide Sulfate-reducing bacteria Microbial ecology Microbially induced concrete corrosion Biological dosing treatments Magnesium hydroxide Hydrogen sulfide Sulfate-reducing bacteria Microbial ecology
  • 相关文献

同被引文献47

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部