期刊文献+

基于一阶剪切变形理论的CNTRC板的自由振动分析 被引量:5

Free Vibration Analysis of CNTRC Plates Based on First-Order Shear Deformation Theory
原文传递
导出
摘要 基于Reissner-Mindlin一阶剪切变形假设(First-order shear deformation theory, FSDT),考虑碳纳米管(Carbon nanotube, CNT)功能梯度材料的不均匀性,建立CNT梯度增强复合薄板结构的自由振动分析模型,模型中考虑了CNT增强体的分布形式、体积率、边界条件及结构的边厚比等因素对该复合薄板结构自由振动响应的影响。克服了经典板理论中不考虑剪切应力的缺陷,通过四边简支(Simply supported, SSSS)板的振动响应特征验证模型的准确性,利用所建模型对CNT梯度增强薄板结构进行了自由振动分析及模态分析。研究表明:CNT增强复合薄板结构的自振频率随着CNT体积率的增加发生几乎线性化的增长;不同的CNT分布形式对振动频率的影响:X型分布的功能梯度板的自振频率最大,O型分布的功能梯度板的自振频率最小,均一及V型分布的固有频率大小介于两者之间。边界条件对板振动形态的影响:由于四边固支(Clamped,CCCC)的边界条件比SSSS约束性更强,其对于边厚比的变化更灵敏,并且随着宽厚比值的增大,边界条件产生的影响越来越大。CNT增强体分布形式、体积率、结构边厚比及边界条件对复合薄板结构自由振动的频率及振动模态有显著的影响。 Based on the Reissner-Mindlin hypothesis, a free vibration analysis of CNTRC(carbon nanotube reinforced composite) plate is investigated with consideration of the nonhomogeneous of CNT. The effects of the distribution form, volume ratio of the CNT reinforcement, boundary conditions and geometric parameters of the plates on the frequency response of the composite structure are verified, respectively. The accuracy of the model is verified by the experiment of simply supported plate. The free vibration analysis of CNT-reinforced functionally graded plate is carried out using the model. The research shows that the effect of 1CNT volume fracture is nearly linear on the vibration of fundamental frequency parameters. Among different distribution forms: the nature frequency of X-shaped functionally graded plate is the largest, followed by V-shaped CNT plate and that of O-shaped distributed form is the lowest. Since the constrains are much stronger in CCCC boundary conditions than in SSSS conditions, CCCC CNTRC plates became more sensitive to width-to-thickness ratio, and the influence of boundary conditions becomes bigger as the width-to-thickness ratio increases. To sum up, the distribution form, volume ratio, width-to-thickness ratio and boundary condition of CNT have a significant effect on the frequency and vibration mode of plate structures.
作者 薛婷 秦现生 张顺琦 王战玺 白晶 XUE Ting;QIN Xiansheng;ZHANG Shunqi;WANG Zhanxi;BAI Jing(School of Mechanical Engineering,Northwestern Polytechnical University,Xi'an 710072;School of Mechanical and Electrical Engineering,Xi'an University of Architecture and Technology,Xi'an 710055;School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2019年第24期45-50,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(11602193,51505380,11972020) 陕西省重点研发计划(2016KTZDGY4-03) 陕西省科技创新(2016KTZDGY4-12) “111计划”(B13044)资助项目
关键词 一阶剪切变形 碳纳米管 自由振动 模态分析 功能梯度结构 Reissner-Mindlin hypothesis CNT free vibration analysis modal analysis functionally graded structures
  • 相关文献

参考文献3

二级参考文献27

  • 1曹志远.不同边界条件功能梯度矩形板固有频率解的一般表达式[J].复合材料学报,2005,22(5):172-177. 被引量:19
  • 2Fleck N A, Muller G M, Ashby M F, Hutchinson J W. Strain gradient plasticity: theory and experiment [J]. Acta Metallurgica et Materialia, 1994, 42 (2): 475-487.
  • 3Stolken J S,Evans A G. A microbend test method for measuring the plasticity length scale[J]. Acta Materi- alia,1998,46(14) :5109-5115.
  • 4Lam D C C, Yang F, Chong A C M, Wang J, Tong P. Experiments and theory in strain gradient elasticity [J]. Journal of the Mechanics and Physics of Solids, 2003,51 (8) : 1477-1508.
  • 5Altenbach J, Altenbach H, Eremeyev V A. On gener- alized Cosserat-type theories of plates and shells: a short review and bibliography[J]. Archive of Applied Mechanics, 2010,80 (1) : 73-92.
  • 6Toupin R A. Theories of elasticity with couple-stress [J]. Archive for Rational Mechanics and Analysis, 1964,17(2) :85-112.
  • 7Mindlin R D,Tiersten H F. Effects of couple stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis,1962,11(1) :415-448.
  • 8Kolter W T. Couple stresses in the theory of elasticity I and II [J]. Proceedings of the Koninklijke Neder- landse Akademie van Wetensch, 1964,67 : 17-44.
  • 9Yang F,Chong A C M,Lam D C C,Tong P. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10) :2731-2743.
  • 10Ma H M, Gao X L, Reddy J N. A microstructure-de- pendent Timoshenko beam model based on a modified couple stress theory[J]. Journal of the Mechanics and Physics of Solids,2008,56(12):3379-3391.

共引文献12

同被引文献27

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部