摘要
We analytically and numerically discuss the stability and dynamics of neutral atoms in a two-dimensional optical lattice subjected to an additional harmonic trap potential and artificial magnetic field.The harmonic trap potential plays a key role in modifying the equilibrium state properties of the system and stabilizing the cyclotron orbits of the condensate.Meanwhile,the presence of the harmonic trap potential and lattice potential results in rich cyclotron dynamics of the condensate.The coupling effects of lattice potential,artificial magnetic field,and harmonic trap potential lead to single periodic,multi-periodic or quasi-periodic cyclotron orbits of the condensate.So we can control the cyclotron dynamics of neutral atoms in optical lattice by manipulating the strength of harmonic confinement,artificial magnetic field,and initial conditions.Our results provide a direct theoretical evidence for the cyclotron dynamics of neutral atoms in optical lattices exposed to the artificial gauge magnetic field and harmonic trap potential.
We analytically and numerically discuss the stability and dynamics of neutral atoms in a two-dimensional optical lattice subjected to an additional harmonic trap potential and artificial magnetic field. The harmonic trap potential plays a key role in modifying the equilibrium state properties of the system and stabilizing the cyclotron orbits of the condensate.Meanwhile, the presence of the harmonic trap potential and lattice potential results in rich cyclotron dynamics of the condensate. The coupling effects of lattice potential, artificial magnetic field, and harmonic trap potential lead to single periodic, multi-periodic or quasi-periodic cyclotron orbits of the condensate. So we can control the cyclotron dynamics of neutral atoms in optical lattice by manipulating the strength of harmonic confinement, artificial magnetic field, and initial conditions. Our results provide a direct theoretical evidence for the cyclotron dynamics of neutral atoms in optical lattices exposed to the artificial gauge magnetic field and harmonic trap potential.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.11764039,11847304,11865014,11475027,11305132,and 11274255)
the Natural Science Foundation of Gansu Province,China(Grant No.17JR5RA076)
the Scientific Research Project of Gansu Higher Education Department,China(Grant No.2016A-005)