摘要
The development of polymeric optical materials with a higher refractive index,transparency in the visible spectrum region and easier processability is increasingly desirable for advanced optical applications such as microlenses,image sensors,and organic light-emitting diodes.Most acrylates have a low refractive index(around 1.50)which does not meet the high perfo rmance requirements of advanced optical materials.In this research,three novel acrylates were synthesized via a facile one-step approach and used to fabricate optical transparent polymers.All of the polymers reveal good optical properties including high transparency(≥90%)in the visible spectrum region and high refractive index values(1.6363)at 550 nm.Moreover,nanostructures of these acrylate polymers with various feature sizes including nanogratings and photonic crystals were successfully fabricated using nanoimprint lithography.These results indicate that these acrylates can be used in a wide range of optical and optoelectronic devices where nanopatterned films with high refractive index and transparency are required.
The development of polymeric optical materials with a higher refractive index,transparency in the visible spectrum region and easier processability is increasingly desirable for advanced optical applications such as microlenses,image sensors,and organic light-emitting diodes.Most acrylates have a low refractive index(around 1.50) which does not meet the high perfo rmance requirements of advanced optical materials.In this research,three novel acrylates were synthesized via a facile one-step approach and used to fabricate optical transparent polymers.All of the polymers reveal good optical properties including high transparency(≥90%) in the visible spectrum region and high refractive index values(1.6363) at 550 nm.Moreover,nanostructures of these acrylate polymers with various feature sizes including nanogratings and photonic crystals were successfully fabricated using nanoimprint lithography.These results indicate that these acrylates can be used in a wide range of optical and optoelectronic devices where nanopatterned films with high refractive index and transparency are required.
基金
supported by the Molecular Foundry,Lawrence Berkeley National Laboratory,which is supported by the Office of Science and Office of Basic Energy Sciences of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231
supported by National Natural Science Foundation of China (No.51573011)
Natural Foundation of Jiangsu Province (No. BK20150272)
Beijing Laboratory of Biomedical Materials
the scholarship support from the program of the China Scholarship Council (No.201706880022) for study at Lawrence Berkeley National Laboratory