摘要
本文建立了一个基于Hodgkin-Huxley神经元的前馈神经元网络模型,研究了平均放电频率在前馈神经元网络中的传递情况。研究结果显示,适当的层间连接概率与输人噪声强度能够提髙前馈神经元网络的同步效率,进而增强网络稳定传递放电频率的性能。此外,通过引入并调节突触时滞,发现适当的时滞对神经元耦合系统的完全同步和前馈神经元网络内信息传输有明显的促进作用。
In this paper,a feedforward neuronal network based on Hodgkin-Huxley neuronal model is constructed and propagation of the mean firing rate in such a feedforward neuronal network is studied.The obtained results illustrate that proper interlayer connection probability and input noise intensity could promote the efficiency of synchronization in the feedforward neuronal network,which hence enhances the performance of stable propagation of the firing rate.Moreover,by introducing and modifying the synaptic time delay,we find that proper time delay could significantly promote the full synchronization in the neuronal coupled systems and information propagation in the studied feedforward neuronal networks.
作者
司皓
赵欣桐
孙晓娟
Si Hao;Zhao Xintong;Sun Xiaojuan(School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China;Institute of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处
《动力学与控制学报》
2020年第1期63-68,共6页
Journal of Dynamics and Control
基金
国家自然科学基金资助项目(11772069)~~
关键词
前馈型神经元网络
放电频率
同步
噪声
时滞
feedforward neuronal network
firing rate
synchronization
noise
time delay