摘要
针对Manin和Radul提出的超对称Korteweg-de Vries(MRSKdV)方程,该文给出了该方程的一个新的贝克隆变换并建立了与此相关的非线性叠加公式,基于贝克隆变换与非线性叠加公式给出了两个离散系统.通过取适当的连续极限,该文将这两个离散系统与MRSKdV方程联系了起来.
A new Backlund transformation is proposed for the supersymmetric extension of the Korteweg-de Vries equation presented by Manin and Radul(MRSKdV).The associated nonlinear superposition formula is also constructed.Using Backlund transformation and nonlinear superposition formula,two discrete systems are proposed.By taking the proper continuum limits,we have connected these two discrete systems with the MRSKdV equation.
作者
毛辉
MAO Hui(School of Mathematics and Statistics,Nanning Normal University,Nanning 530299,China)
出处
《南宁师范大学学报(自然科学版)》
2019年第4期12-18,49,共8页
Journal of Nanning Normal University:Natural Science Edition
基金
supported by the National Natural Science Foundation of China(Grant No.11905110)
Natural Science Foundation of Guangxi Zhuang autonomous region,China(Grant No.2018GXNSFBA050020)
Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Guangxi Zhuang autonomous region,China(Grant No.2019KY0417)