期刊文献+

超对称Manin-Radul KdV方程的贝克隆变换(英文) 被引量:1

B■cklund Transformations for the Manin-Radul Supersymmetric KdV Equation
下载PDF
导出
摘要 针对Manin和Radul提出的超对称Korteweg-de Vries(MRSKdV)方程,该文给出了该方程的一个新的贝克隆变换并建立了与此相关的非线性叠加公式,基于贝克隆变换与非线性叠加公式给出了两个离散系统.通过取适当的连续极限,该文将这两个离散系统与MRSKdV方程联系了起来. A new Backlund transformation is proposed for the supersymmetric extension of the Korteweg-de Vries equation presented by Manin and Radul(MRSKdV).The associated nonlinear superposition formula is also constructed.Using Backlund transformation and nonlinear superposition formula,two discrete systems are proposed.By taking the proper continuum limits,we have connected these two discrete systems with the MRSKdV equation.
作者 毛辉 MAO Hui(School of Mathematics and Statistics,Nanning Normal University,Nanning 530299,China)
出处 《南宁师范大学学报(自然科学版)》 2019年第4期12-18,49,共8页 Journal of Nanning Normal University:Natural Science Edition
基金 supported by the National Natural Science Foundation of China(Grant No.11905110) Natural Science Foundation of Guangxi Zhuang autonomous region,China(Grant No.2018GXNSFBA050020) Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Guangxi Zhuang autonomous region,China(Grant No.2019KY0417)
关键词 B■cklund变换 超对称系统 非线性叠加公式 离散可积系统 DARBOUX变换 Backlund transformation supersymmetric integrable system nonlinear superposition formula discrete integrable system Darboux transformation
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部