摘要
【目的/意义】对Google,Bing,百度和搜狗四个中外文搜索引擎的自然语言问答能力进行评价,以揭示搜索引擎正在向兼具搜索和自动问答功能的系统演进的趋势,对不同搜索引擎在不同类型问题上的自然语言回答能力进行比较【方法/过程】从文本检索会议和自然语言处理与中文计算会议的问答系统评测项目抽取了三类问题(人物类、时间类、地点类),并进行搜索,以搜索引擎是否返回准确答案或包含正确答案的精选摘要为标准进行人工评分,使用单因素方差分析和多重比较检验的方法进行比较分析。【结果/结论】主流的中外文搜索引擎均已具备一定的自然语言问答能力,但仍存在较大的提升空间。Google总体表现最好,但对于人物类问题的回答能力弱于搜狗.中外文搜索引擎在时间类问题上的表现均好于人物类和地点类问题.
[ PuqDose/significance ] This study aim to evaluate the natural language question-answering (QA) ability of four Chinese and foreign search engines (Google, Bing, Baidu and Sogou), revealing the trend that search engines are evolving to systems with both searching and automatic question-answering functions. [Method/process] We have compared the QA ability of four different search engines on three different types of questions. This study has extracted three types of natural language questions (Who- question, When- question and Where- question) from QA evaluation project of the Text Retrieval Conference(TREC) and the Natural Language processing and Chinese Computing Conference(NLPCC). Each question has been searched by four search engines separately and the results have been rated manually by the standard whether the search engine returns an accurate answer or a featured abstract with the correct answer. One-way ANOVA and LSD tests were used to compare and analyze QA ability among four different search engines. [ Result/conclusion ]The mainstream Chinese and foreign search engines all have some natural language QA ability, but still have to be promoted greatly. Google's overall performance is the best, but the ability to answer who- questions is weaker than that of Sogou. The four search engines all perform better on when- questions than on who- and where- questions.
作者
赵一鸣
刘炫彤
ZHAO Yi-ming;LIU Xuan-tong(Center for Studies of Information Resources,Wuhan University,Wuhan 430012,China;School of Information Management,Wuhan University,Wuhan 430072,China;National Demonstration Center for Experimental Library and Information Science Education at Wuhan University,Wuhan 430012,China)
出处
《情报科学》
CSSCI
北大核心
2020年第1期67-74,共8页
Information Science
基金
国家自然科学基金面上项目“探寻式搜索过程中的路径识别与评价研究”(71874130)
国家自然科学基金重点国际合作项目“大数据环境下的知识组织与服务创新研究”(71420107026)
中国科协青年人才托举工程和武汉大学青年学者学术团队项目(Whu2016013)
关键词
搜索引擎
问答系统
自然语言问答能力
搜索引擎评价
search engine
question answering system
natural language question answering ability
evaluation of search engine