期刊文献+

中外文搜索引擎自然语言问答能力的比较与评价研究 被引量:5

Comparison and Evaluation of Natural Language Question Answering Capability of Chinese and Foreign Language Search Engines
原文传递
导出
摘要 【目的/意义】对Google,Bing,百度和搜狗四个中外文搜索引擎的自然语言问答能力进行评价,以揭示搜索引擎正在向兼具搜索和自动问答功能的系统演进的趋势,对不同搜索引擎在不同类型问题上的自然语言回答能力进行比较【方法/过程】从文本检索会议和自然语言处理与中文计算会议的问答系统评测项目抽取了三类问题(人物类、时间类、地点类),并进行搜索,以搜索引擎是否返回准确答案或包含正确答案的精选摘要为标准进行人工评分,使用单因素方差分析和多重比较检验的方法进行比较分析。【结果/结论】主流的中外文搜索引擎均已具备一定的自然语言问答能力,但仍存在较大的提升空间。Google总体表现最好,但对于人物类问题的回答能力弱于搜狗.中外文搜索引擎在时间类问题上的表现均好于人物类和地点类问题. [ PuqDose/significance ] This study aim to evaluate the natural language question-answering (QA) ability of four Chinese and foreign search engines (Google, Bing, Baidu and Sogou), revealing the trend that search engines are evolving to systems with both searching and automatic question-answering functions. [Method/process] We have compared the QA ability of four different search engines on three different types of questions. This study has extracted three types of natural language questions (Who- question, When- question and Where- question) from QA evaluation project of the Text Retrieval Conference(TREC) and the Natural Language processing and Chinese Computing Conference(NLPCC). Each question has been searched by four search engines separately and the results have been rated manually by the standard whether the search engine returns an accurate answer or a featured abstract with the correct answer. One-way ANOVA and LSD tests were used to compare and analyze QA ability among four different search engines. [ Result/conclusion ]The mainstream Chinese and foreign search engines all have some natural language QA ability, but still have to be promoted greatly. Google's overall performance is the best, but the ability to answer who- questions is weaker than that of Sogou. The four search engines all perform better on when- questions than on who- and where- questions.
作者 赵一鸣 刘炫彤 ZHAO Yi-ming;LIU Xuan-tong(Center for Studies of Information Resources,Wuhan University,Wuhan 430012,China;School of Information Management,Wuhan University,Wuhan 430072,China;National Demonstration Center for Experimental Library and Information Science Education at Wuhan University,Wuhan 430012,China)
出处 《情报科学》 CSSCI 北大核心 2020年第1期67-74,共8页 Information Science
基金 国家自然科学基金面上项目“探寻式搜索过程中的路径识别与评价研究”(71874130) 国家自然科学基金重点国际合作项目“大数据环境下的知识组织与服务创新研究”(71420107026) 中国科协青年人才托举工程和武汉大学青年学者学术团队项目(Whu2016013)
关键词 搜索引擎 问答系统 自然语言问答能力 搜索引擎评价 search engine question answering system natural language question answering ability evaluation of search engine
  • 相关文献

参考文献6

二级参考文献115

  • 1王树西.问答系统:核心技术、发展趋势[J].计算机工程与应用,2005,41(18):1-3. 被引量:28
  • 2Zhang D, Lee W S. Question classification using support vector machines[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '03). New York, NY, USA: ACM, 2003: 26-32.
  • 3Cui Hang, Kan M- Y, Chua T-S. Unsupervised learning of soft patterns for generating definitions from online news [C]//Feldman S I, Uretsky M, Najork M, et al. Proceedings of the 13th International Conference on World Wide Web (WWW 2004), May 17-20, 2004. New York, NY, USA: ACM, 2004: 90-99.
  • 4Collins-Thompson K, Callan J, Terra E, et al. The effect of document retrieval quality on factoid question answering performance[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '04). New York, NY, USA: ACM, 2004: 574-575.
  • 5Moldovan D, Pasca M, Harabagiu S, et al. Performance issues and error analysis in an open-domain question answering system[J]. ACM Transactions on Information Systems, 2003, 21(2): 133-154.
  • 6Tellex S, Katz B, Lin J, et al. Quantitative evaluation of passage retrieval algorithms for question answering[C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '03). New York, NY, USA: ACM, 2003: 41-47.
  • 7Moldovan D I, Harabagiu S M, Pasca M, et al. The structure and performance of an open-domain question answering system[C]//Proceedings of the 38th Annual Meeting on Association for Computational Linguistics (ACL '00). Stroudsburg, PA, USA: Association for Computational Linguistics, 2000: 563-570.
  • 8Agichtein E, Lawrence S, Gravano L. Learning to find answers to questions on the Web[J]. ACM Transactions on Internet Technology, 2004, 4(2): 129-162.
  • 9Clarke C, Cormack G, Kisman D, et al. Question answering by passage selection (multi text experiments for TREC-9) [C]//Proceedings of the 9th Text Retrieval Conference (TREC-9), 2000.
  • 10Ittycheriah A, Franz M, Zhu W-J, et al. IBM's statistical question answering system[C]//Proceedings of the 9th Text Retrieval Conference (TREC-9), 2000.

共引文献142

同被引文献59

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部