期刊文献+

基于Pytorch和Opencv的人脸关键点检测 被引量:2

Face key detection based on Pytorch and Opencv
下载PDF
导出
摘要 在人脸识别技术中最重要的一步就是关键点检测,为实现简单的人脸面部关键点检测,设计一种卷积神经网络,在深度学习Pytorch框架下使用Youtube face数据集经过训练得到模型分类器,且测试集上错误率达到0.139%,结合Opencv的级联人脸检测器和训练好的Pytorch模型可定位任意图片的人脸框以及68个关键点的位置。测试结果表明,人脸及人脸关键点检测识别准确度较高,且该方法简单高效,可用于现实应用场景的模块构建。 The most important step in face recognition technology is key point detection. To realize simple face key point detection, a convolutional neural network is designed. Under the deep learning Pytorch framework, the Youtube face data set is used to train the model classification. And the error rate on the test set reaches 0.139%. Combined with Opencv’s cascaded face detector and trained Pytorch model, you can locate the face frame of any picture and the position of 68 key points. The test results show that the recognition accuracy of face and face key points is high, and the method is simple and efficient, and can be used for module construction of real application scenarios.
作者 孟令军 王静波 MENG Lingjun;WANG Jingbo(NationalKey Laboratory for Electronic Measurement Technology,North University of China,Taiyuan 030051,China)
出处 《电视技术》 2019年第14期71-76,共6页 Video Engineering
关键词 人脸关键点检测 卷积神经网络 深度学习 Pytorch face key point detection convolutional neural network deep learning Pytorch
  • 相关文献

参考文献7

二级参考文献57

  • 1CLARKE R.Human identification in information systems:management challenges and public policy issues[J].Information Technology & People,1994,7(4):6-37.
  • 2DAVIES S G.Touching big brother:how biometric technology will fuse flesh and machine[J].Information Technology & People,1994,7(4):60-69.
  • 3NEWHAM E.The biometric report[R].New York:SJB Services,1995.
  • 4JAIN A K,BOLLE R,PANKANTI S.Biometrics:personal identification in networked society[M].Norwell,USA:Kluwer Academic Publishers,1999.
  • 5PHILLIPS P J,GROTHER P,MICHEALS R J,et al.FRVT 2002:Evaluation Report[EB/OL].(2003-03-15)[2008-08-16].http://www.frvt.org/FRVT2002/documents.htm.
  • 6SU Guangda,ZHANG Cuiping,DING Rong,et al.MMP-PCA face recognition method[J].Electronics Letters,2002,38(25):1654-1656.
  • 7DU Cheng,SU Guangda.Eyeglasses removal from facial images[J].Pattern Recognition Letters,2005,26(14):2215-2220.
  • 8PHILLIPS P J,SCRUGGS W T,O'TOOLE A J,et al.FRVT 2006 and ICE 2006 Large-Scale Results[EB/OL].(2007-03-10)[2008-08-16].http://www.frvt.org/FRVT2006/docs/FRVT2006andICE2006LargeScaleReport.pdf.
  • 9甘俊英,高建虎,李春芝.基于对角DCT与2DPCA算法的人脸识别[J].计算机工程与应用,2007,43(31):210-213. 被引量:7
  • 10LEE H S,KIM D J. Generating frontal view face image for pose in-va-riant face recognition[J]. Pattern Recognition,2006,27(7) :747-754.

共引文献98

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部