期刊文献+

A Multi-Objective Optimal Experimental Design Framework for Enhancing the Efficiency of Online Model Identification Platforms

下载PDF
导出
摘要 Recent advances in automation and digitization enable the close integration of physical devices with their virtual counterparts, facilitating the real-time modeling and optimization of a multitude of processes in an automatic way. The rich and continuously updated data environment provided by such systems makes it possible for decisions to be made over time to drive the process toward optimal targets. In many man- ufacturing processes, in order to achieve an overall optimal process, the simultaneous assessment of mul- tiple objective functions related to process performance and cost is necessary. In this work, a multi- objective optimal experimental design framework is proposed to enhance the ef ciency of online model-identi cation platforms. The proposed framework permits exibility in the choice of trade-off experimental design solutions, which are calculated online that is, during the execution of experiments. The application of this framework to improve the online identi cation of kinetic models in ow reactors is illustrated using a case study in which a kinetic model is identi ed for the esteri cation of benzoic acid and ethanol in a microreactor.
出处 《Engineering》 SCIE EI 2019年第6期1049-1059,共11页 工程(英文)
  • 相关文献

参考文献1

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部