期刊文献+

三氧化钼纳米带自组装柔性薄膜超级电容器的制备及其性能研究 被引量:1

Preparation and Properties of MoO3 Nanobelts Self-assembled Flexible Film Supercapacitors
下载PDF
导出
摘要 采用单质钼为钼源,水热合成了具有高长径比的三氧化钼(MoO3)纳米带,并通过减压抽滤制备了MoO 3纳米带自组装柔性薄膜。对MoO3纳米带的形貌和结构进行了表征,采用三电极体系研究了MoO3纳米带的电化学电容行为,考察了MoO3纳米带自组装柔性薄膜直接作为电极组装柔性薄膜电容的性能。实验结果表明,MoO3纳米带的长度为6~10μm,宽度为100~300 nm,厚度为7~10nm,MoO3纳米带自组装薄膜显示了很高的柔性,在100 mV/s的扫描速率下面积比电容为340 mF/cm2。以此组装的柔性薄膜电容在5 mA/cm 2的电流密度下,2000圈循环后电容保持率可达80%。 Using molybdenum powders as precursor,the MoO 3 nanobelts with high aspect ratio were synthesized by hydrothermal method.The MoO 3 nanobelts self-assembled films were further fabricated by vacuum-assisted filtration.The morphology and structure of MoO 3 nanobelts were characterized,and the electrochemical capacitance behavior of MoO 3 nanobelts was studied by three-electrode method.The capacitance performances of MoO 3 nanobelts film assembled flexible supercapacitors were also studied.The experimental results show that the MoO 3 nanobelt has a length of about 6~10μm,a width of 100~300 nm,and a thickness of about 7~10 nm.The MoO 3 nanobelt self-assembled film exhibits a high flexibility.The MoO 3 film has an area specific capacitance of 340 mF/cm 2 at a scan rate of 100 mV/s.The capacitance retention rate can reach 80%after 2000 cycles at a current density of 5 mA/cm 2.
作者 范金辰 李梁 FAN Jinchen;LI Liang(School of Environmental and Chemical Engineering,Shanghai University of Electric Power,Shanghai200090,China)
出处 《上海电力学院学报》 CAS 2020年第1期31-35,56,共6页 Journal of Shanghai University of Electric Power
基金 国家自然科学基金(21604051)
关键词 MOO 3纳米带 自组装柔性薄膜 柔性超级电容器 MoO 3 nanobelts self-assembled flexible film Flexible Supercapacitor
  • 相关文献

参考文献3

二级参考文献48

  • 1郭荣辉,杨晓青,秦文峰.电致变色三氧化钼薄膜研究进展[J].中国钼业,2005,29(5):39-42. 被引量:4
  • 2Simon P, Gogotsi Y. Nat. Mater., 2008,7:845-854.
  • 3Stoller M D, Park S, Zhu Y, et al. Narto Lett., 2008,8:3498- 3502.
  • 4Zhang L L, Zhao X. Chem. Soc. Rev., 2009,38:2520-2531.
  • 5Liu C, Li F, Ma L P, et al. Adv. Mater., 2010,22:E28-E62.
  • 6Hu C C, Chang K H, Lin M C, et al. Nano Lett., 2006,6: 2690-2695.
  • 7Huang H S, Chang K H, Suzuki N, et al. Small, 2013,9: 2520-2526.
  • 8Jena A, Munichandraiah N, Shivashankar S. J. Power Sources, 2013,237:156-166.
  • 9Li Z, Mi Y, Liu X, et al. J. Mater. Chem., 2011,21:14706- 14711.
  • 10Liao M, Liu Y, Hu Z, et al. J. Alloys Compd., 2013,562:106- 110.

共引文献8

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部