摘要
基于压电陶瓷驱动器的工作原理以及形状记忆合金(shape memory alloy,SMA)丝的力学性能特点,研发一种SMA压电混合减震装置,对其进行电-力学试验,并在试验数据的基础上建立以速率符号、电压和位移为神经元输入的混合装置BP网络预测模型。最后将其安装到一个相似比1∶2的10 kV干式空心电抗器结构模型中,其中压电驱动器的激励电压采用T-S模糊逻辑输出,对其进行无控、被动控制和混合控制时的模拟地震振动台试验和数值模拟,进而分析模型结构的动力特性变化规律和不同地震波时的地震响应抑制效果。结果表明:文中研制的SMA-压电摩擦混合减震装置性能稳定、构造合理,可以有效地降低电抗器结构的动力反应。一般地,被动控制时位移和加速度的减震率可达40%,混合控制时可达50%,且震后未见电抗器结构薄弱部位发生地震破坏,说明智能材料减震系统提高了电抗器结构的抗震可靠性,为电气设备系统的减震控制保护提供了新途径。另外,试验与数值模拟结果吻合较好,表明BP神经网络可以较好地跟踪压电SMA混合减震装置的输出力。
Based on the working principle of the piezoelectric ceramic actuator and mechanical characteristics of shape memory alloy(SMA),a kind of SMA and piezoelectric hybrid damping device is developed and the electrical-mechanical test is carried out.Taking the speed symbol,voltage and displacement as the neuron inputs and the BP network prediction model is established based on the test data.Finally,the hybrid device is installed in a 10 kV dry-type air-core reactor model whose similar ratio is 1:2.The shaking table test and numerical simulation are finished under no control,passive control and hybrid control;in the test,the excitation voltage of the piezoelectric actuator is applied by means of T-S fuzzy logic;the dynamic characteristics and seismic response for model structure at the different seismic waves are analyzed.The results show that the developed SMA-PZT friction hybrid damping device which has stable performance and reasonable structure,can effectively inhibit the dynamic response to the structure and realize seismic control for damping reactor equipment.Generally,the shock absorption rates for displacement and acceleration can reach 40%at passive control,and up to 50%at hybrid control;after test,no weak parts of the reactor structure appear in earthquake damage,which proves that the intelligent damping system can improve the aseismic reliability of the reactor structure and provide a new way for the protection for vibration control of electrical equipment system.In addition,the experimental results are in good agreement with the numerical simulation results,which indicates that the BP neural network can better track the output of SMA and piezoelectric hybrid damping device.
作者
展猛
王社良
赵云
ZHAN Meng;WANG She-liang;ZHAO Yun(College of Architecture Engineering,Huanghuai University,Zhumadian 463000,China;College of Civil Engineering,Xi′an University of Architecture and Technology,Xi′an 710055,China;College of Architecture Engineering,Tianjin University,Tianjin 300000,China)
出处
《振动工程学报》
EI
CSCD
北大核心
2020年第1期179-187,共9页
Journal of Vibration Engineering
基金
国家自然科学基金资助项目(51678480)
河南省高等学校重点科研项目(19A560016)
河南省科技攻关项目(202102310248,192102310277,182102310834)
驻马店市重大科技专项(19005)