摘要
针对电力工程数据规模大、种类多、数据分析处理困难等问题,提出了一种基于人工智能技术的模糊神经网络算法对电力工程数据进行分析处理。该算法结合了神经网络的学习特点和模糊系统的容错优势,利用k-mans算法对样本输入空间进行聚类分析,生成隶属度矩阵并利用神经网络算法对数据进行训练最终完成目标输出。文中以200条历史数据为例,利用模糊神经网络算法对其进行了分析并在此基础上对新的电力工程造价进行了预测,分析结果能够满足现有的工程应用需求。文中的研究内容,对提高电力工程数据的利用水平和工程管理能力具有重要意义。
Aiming at the problems of large scale,variety and difficulty in data analysis and processing of power engineering data,a fuzzy neural network algorithm based on artificial intelligence technology is proposed to analyze and process power engineering data.This algorithm combines the learning characteristics of the neural network and the fault-tolerant advantages of the fuzzy system,uses k-mans algorithm to cluster the sample input space,generates the membership matrix,and uses the neural network algorithm to train the data,and finally completes the target output.Taking 200 historical data as an example,this paper uses the fuzzy neural network algorithm to analyze and forecast the new power engineering cost.The analysis results can meet the existing engineering application requirements.The research content of this paper is of great significance to improve the utilization level of power engineering data and engineering management ability.
作者
杨春
王哲
聂波
彭春华
吴建伟
YANG Chun;WANG Zhe;NIE Bo;PENG Chun⁃hua;WU Jian⁃wei(Information Center,Guangdong Power Grid Co.,Ltd.,Guangzhou 510000,China)
出处
《电子设计工程》
2020年第2期91-94,共4页
Electronic Design Engineering
关键词
电力工程数据
人工智能技术
模糊神经网络
聚类分析
数据训练
electric power engineering data
artificial intelligence technology
fuzzy neural network
cluster analysis
data training