摘要
基于分形理论与技术,该文研究了牛顿流体在多孔介质中球向渗流问题,提出了牛顿流体球向渗流渗透率模型,分析了多孔介质的微结构参数对球向渗透率的影响.研究结果表明,球向渗透率随孔隙面积分形维数和孔隙度的增加而增加,随迂曲度分形维数和径向距离r的增加而减小;本模型预期结果与Chang和Yortsos的模型相比较吻合较好,证实了球向渗透率分形模型的正确性.
Based on the fractal theory, the spherical seepage for Newtonian fluids in porous media is investigated. The permeability model for spherical seepage in porous media is developed in this paper. The effect of microstrucural parameters of porous media on the permeability is analyzed. The results show that the radial permeability for spherical seepage in the porous media increases with the increases of the pore area fractal dimension and the porosity, and decreases with the increases of the tortuosity fractal dimension and the radial distance. We also compare our permeability model for spherical seepage with Chang and Yortso’s model. A good agreement is obtained between them.
作者
王世芳
吴涛
夏坤
WANG Shifang;WU Tao;XIA Kun(Department of Physics and Mechanical&Electrical Engineering,Hubei University of Education,Wuhan 430205;Hubei Key Laboratory of Optical Information and Pattern Recognition,School of Mathematics and Physics,Wuhan Institute of Technology,Wuhan 430205,China)
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第1期45-49,共5页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(11402081)
光学信息与模式识别湖北省重点实验室开放课题研究基金资助项目
关键词
球形渗流
分形理论
多孔介质
渗透率
孔隙率
spherical seepage
fractal theory
porous media
permeability
porosity