摘要
运用C#编程语言实现了SWMM模型参数的自动提取,通过创建BP-人工神经网络实现了节点水深值与模型参数值之间的非线性拟合,基于模型参数率定的思路提出了一种排水管道泥沙淤积深度的估算方法,并且以G市某雨水排水系统为例,采用4场降雨数据对模型进行了校核与验证。结果表明,通过两场降雨数据的验证,对于管径为1.2~1.8 m的管道,淤积深度预测值与实测值之间的绝对误差均在4 cm以内;模拟结果和实测数据的水深峰现时间偏差均低于实测数据历时的5%,峰值的数值偏差均在3%以内;场次3和场次4两场降雨4个监测点的水深预测值与实测值的平均相对误差分别为3.35%、2.98%,2.75%、2.51%,7.39%、6.77%,5.53%、8.15%,说明该方法能够对排水管道淤积情况进行有效预测。
The automatic extraction of SWMM model parameters was realized by using C#programming language,and the nonlinear fitting between nodal water depth value and model parameter was realized by building a BP-artificial neural network(ANN).Based on the idea of parameter calibration of storm water management model(SWMM),a method for estimating the sediment deposition depth of drainage pipelines was proposed.The model was checked and validated with data of four rainfall events a rainwater drainage system of G city.By model validation with data of two rainfall events,the absolute error between the predicted and measured values of sedimentation depth in pipelines with diameters between 1.2 m and 1.8 m was within 4 cm.The deviation of water depth peak appearance time between the simulated results and the measured data was below 5%of the measured duration,and the deviation of the water depth peak value was within 3%.The average relative errors between the simulated and measured water depth of rainfall 3 and 4 at the four monitoring points were 3.35%and 2.98%,2.75%and 2.51%,7.39%and 6.77%and 5.53%and 8.15%,respectively,indicating that this method could effectively predict the sedimentation of drainage pipelines.
作者
吴慧英
江凯兵
李天兵
邹新军
钟英强
WU Hui-ying;JIANG Kai-bing;LI Tian-bing;ZOU Xin-jun;ZHONG Ying-qiang(Key Laboratory of Building Safety and Energy Efficiency<Ministry of Education>,College of Civil Engineering,Hunan University,Changsha 410082,China;Guangzhou Zhonggong Water Information Technology Co.Ltd.,Guangzhou 510280,China;School of Geography and Information Engineering,China University of Geosciences,Wuhan 430074,China)
出处
《中国给水排水》
CAS
CSCD
北大核心
2020年第1期117-122,共6页
China Water & Wastewater
基金
湖南省重点研发计划项目(2018NK2054)
国家自然科学基金资助项目(51578231)。
关键词
泥沙淤积深度
排水管道
雨洪管理模型
参数率定
C#编程语言
人工神经网络
sediment deposition depth
drainage pipeline
SWMM
parameter calibration
C#programming language
artificial neural network