摘要
针对计量装置运行异常在供电企业经济效益稳定增长和社会稳定发展等方面造成的负面影响且电网数据标识不全的现状,提出一种应用半监督学习的计量装置运行状态辨识方法。通过对电网数据进行分析,实现在标识不全的情况下判断计量装置运行状态。
In view of the negative impact of abnormal operation of measurement devices on the steady economic growth and social stability of power supply enterprises,and the current situation of incomplete identification of power grid data,a semi-supervised learning method for identifying the running state of measurement device is proposed.By analyzing the data of power grid,the operation state of measurement device can be judged under the condition of incomplete identification.
作者
马吉科
尹飞
祝永晋
豆龙龙
李剑
MA Ji-ke;YIN Fei;ZHU Yong-jin;DOU Long-long;LI Jian(Jiangsu Fangtian Power Technology Co.Ltd.,Nanjing 210096,China)
出处
《计算机与现代化》
2020年第3期82-85,共4页
Computer and Modernization
关键词
半监督学习
机器学习
计量装置
semi-supervised learning
machine learning
measurement device